These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29293845)

  • 1. Edge-Of-Field Evaluation of the Ohio Phosphorus Risk Index.
    Williams MR; King KW; LaBarge GA; Confesor RB; Fausey NR
    J Environ Qual; 2017 Nov; 46(6):1306-1313. PubMed ID: 29293845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA.
    Hanrahan BR; King KW; Duncan EW; Shedekar VS
    J Environ Manage; 2021 Sep; 293():112910. PubMed ID: 34098350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
    Ford WI; King KW; Williams MR; Confesor RB
    J Environ Qual; 2017 Nov; 46(6):1413-1423. PubMed ID: 29293822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connecting soil characteristics to edge-of-field water quality in Ohio.
    Osterholz WR; Schwab ER; Duncan EW; Smith DR; King KW
    J Environ Qual; 2023; 52(3):476-491. PubMed ID: 34783382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreasing Phosphorus Loss in Tile-Drained Landscapes Using Flue Gas Desulfurization Gypsum.
    King KW; Williams MR; Dick WA; LaBarge GA
    J Environ Qual; 2016 Sep; 45(5):1722-1730. PubMed ID: 27695765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields.
    Osterholz WR; Hanrahan BR; King KW
    J Environ Qual; 2020 May; 49(3):675-687. PubMed ID: 33016383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.
    Ford W; King K; Williams M; Williams J; Fausey N
    J Environ Qual; 2015 Jul; 44(4):1099-110. PubMed ID: 26437091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining field phosphorus runoff risk assessments with whole-farm phosphorus balances to guide manure management decisions.
    Ros MBH; Czymmek KJ; Ketterings QM
    J Environ Qual; 2020 Mar; 49(2):496-508. PubMed ID: 33016424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus and nitrogen in runoff after phosphorus- or nitrogen-based manure applications.
    Miller JJ; Chanasyk DS; Curtis TW; Olson BM
    J Environ Qual; 2011; 40(3):949-58. PubMed ID: 21546681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie.
    Daloğlu I; Cho KH; Scavia D
    Environ Sci Technol; 2012 Oct; 46(19):10660-6. PubMed ID: 22962949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characteristics of nitrogen and phosphorus runoff losses from croplands with different planting patterns in a riverine plain area of Zhejiang Province, East China].
    Zhang MK; Wang Y; Huang C
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3211-20. PubMed ID: 22384589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydrodynamically rough grassed waterways on dissolved reactive phosphorus loads coming from agricultural watersheds.
    Fiener P; Auerswald K
    J Environ Qual; 2009; 38(2):548-59. PubMed ID: 19202025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.
    Good LW; Vadas P; Panuska JC; Bonilla CA; Jokela WE
    J Environ Qual; 2012; 41(6):1730-40. PubMed ID: 23128730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisite Evaluation of APEX for Water Quality: II. Regional Parameterization.
    Nelson NO; Baffaut C; Lory JA; Anomaa Senaviratne GMMM; Bhandari AB; Udawatta RP; Sweeney DW; Helmers MJ; Van Liew MW; Mallarino AP; Wortmann CS
    J Environ Qual; 2017 Nov; 46(6):1349-1356. PubMed ID: 29293851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the Impact of Seasonal and Short-term Manure Application Decisions on Phosphorus Loss in Surface Runoff.
    Vadas PA; Good LW; Jokela WE; Karthikeyan KG; Arriaga FJ; Stock M
    J Environ Qual; 2017 Nov; 46(6):1395-1402. PubMed ID: 29293831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the APEX Model to Simulate Runoff Quality from Agricultural Fields in the Southern Region of the United States.
    Ramirez-Avila JJ; Radcliffe DE; Osmond D; Bolster C; Sharpley A; Ortega-Achury SL; Forsberg A; Oldham JL
    J Environ Qual; 2017 Nov; 46(6):1357-1364. PubMed ID: 29293856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of the APEX Model to Simulate Management Practice Effects on Runoff, Sediment, and Phosphorus Loss.
    Bhandari AB; Nelson NO; Sweeney DW; Baffaut C; Lory JA; Senaviratne A; Pierzynski GM; Janssen KA; Barnes PL
    J Environ Qual; 2017 Nov; 46(6):1332-1340. PubMed ID: 29293861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and subsurface phosphorus losses from fertilized pasture systems in Ohio.
    Owens LB; Shipitalo MJ
    J Environ Qual; 2006; 35(4):1101-9. PubMed ID: 16738395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of systematic tile drainage to watershed-scale phosphorus transport.
    King KW; Williams MR; Fausey NR
    J Environ Qual; 2015 Mar; 44(2):486-94. PubMed ID: 26023967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.