BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29293864)

  • 1. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites.
    Lapointe MC; Martel R; Diaz E
    J Environ Qual; 2017 Nov; 46(6):1444-1454. PubMed ID: 29293864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the key intermediates of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation.
    Paquet L; Monteil-Rivera F; Hatzinger PB; Fuller ME; Hawari J
    J Environ Monit; 2011 Aug; 13(8):2304-11. PubMed ID: 21734991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.
    Jugnia LB; Manno D; Drouin K; Hendry M
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19436-19445. PubMed ID: 29728973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater.
    Beller HR; Tiemeier K
    Environ Sci Technol; 2002 May; 36(9):2060-6. PubMed ID: 12026993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory Column Evaluation of High Explosives Attenuation in Grenade Range Soils.
    Won J; Borden RC
    J Environ Qual; 2017 Sep; 46(5):968-974. PubMed ID: 28991974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.
    Fuller ME; Schaefer CE; Steffan RJ
    Chemosphere; 2009 Nov; 77(8):1076-83. PubMed ID: 19765798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions.
    Waisner S; Hansen L; Fredrickson H; Nestler C; Zappi M; Banerji S; Bajpai R
    J Hazard Mater; 2002 Nov; 95(1-2):91-106. PubMed ID: 12409241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating redox conditions to enhance in situ bioremediation of RDX in groundwater at a contaminated site.
    Jugnia LB; Manno D; Dodard S; Greer CW; Hendry M
    Sci Total Environ; 2019 Aug; 676():368-377. PubMed ID: 31048167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of soil interstitial water in the accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine in the earthworm Eisenia andrei.
    Savard K; Sarrazin M; Dodard SG; Monteil-Rivera F; Kuperman RG; Hawari J; Sunahara GI
    Environ Toxicol Chem; 2010 Apr; 29(4):998-1005. PubMed ID: 20821531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contamination characteristics of energetic compounds in soils of two different types of military demolition range in China.
    Zhang H; Zhu Y; Wang S; Zhao S; Nie Y; Liao X; Cao H; Yin H; Liu X
    Environ Pollut; 2022 Feb; 295():118654. PubMed ID: 34890741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of energetic materials in ground water at an anti-tank range.
    Martel R; Mailloux M; Gabriel U; Lefebvre R; Thiboutot S; Ampleman G
    J Environ Qual; 2009; 38(1):75-92. PubMed ID: 19141797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine by the earthworm Eisenia andrei in a sandy loam soil.
    Sarrazin M; Dodard SG; Savard K; Lachance B; Robidoux PY; Kuperman RG; Hawari J; Ampleman G; Thiboutot S; Sunahara GI
    Environ Toxicol Chem; 2009 Oct; 28(10):2125-33. PubMed ID: 19432505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil.
    Larson SL; Martin WA; Escalon BL; Thompson M
    Environ Sci Technol; 2008 Feb; 42(3):786-92. PubMed ID: 18323103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural and Enhanced Attenuation of Explosives on a Hand Grenade Range.
    Borden RC; Won J; Yuncu B
    J Environ Qual; 2017 Sep; 46(5):961-967. PubMed ID: 28991983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.
    Katseanes CK; Chappell MA; Hopkins BG; Durham BD; Price CL; Porter BE; Miller LF
    J Environ Manage; 2016 Nov; 182():101-110. PubMed ID: 27454101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.
    Kuperman RG; Checkai RT; Simini M; Phillips CT; Kolakowski JE; Lanno R
    Environ Toxicol Chem; 2013 Nov; 32(11):2648-59. PubMed ID: 23955807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RDX loss in a surface soil under saturated and well drained conditions.
    Ringelberg DB; Reynolds CM; Walsh ME; Jenkins TF
    J Environ Qual; 2003; 32(4):1244-9. PubMed ID: 12931878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone.
    Ronen Z; Yanovich Y; Goldin R; Adar E
    Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.