BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29294039)

  • 1. Oxidative and nitrosative stress responses during macrophage-Candida albicans biofilm interaction.
    Arce Miranda JE; Baronetti JL; Sotomayor CE; Paraje MG
    Med Mycol; 2019 Jan; 57(1):101-113. PubMed ID: 29294039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usnic Acid Activity on Oxidative and Nitrosative Stress of Azole-Resistant Candida albicans Biofilm.
    Peralta MA; da Silva MA; Ortega MG; Cabrera JL; Paraje MG
    Planta Med; 2017 Feb; 83(3-04):326-333. PubMed ID: 27648556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms.
    Peralta MA; da Silva MA; Ortega MG; Cabrera JL; Paraje MG
    Phytomedicine; 2015 Oct; 22(11):975-80. PubMed ID: 26407939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation.
    Marioni J; da Silva MA; Cabrera JL; Montoya SC; Paraje MG
    Phytomedicine; 2016 Nov; 23(12):1321-1328. PubMed ID: 27765351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of oxygen and nitrogen reactive intermediates to disperse Listeria monocytogenes from biofilms.
    Dos Reis-Teixeira FB; Conceição N; da Silva LP; Alves VF; De Martinis ECP
    Braz J Microbiol; 2019 Apr; 50(2):501-506. PubMed ID: 30864077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Candida tropicalis biofilm by photoactivation of a Heterophyllaea pustulata extract.
    Marioni J; Arce JE; Cabrera JL; Paraje MG; Núñez Montoya SC
    Pharm Biol; 2016 Dec; 54(12):2791-2801. PubMed ID: 27256704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.
    Shirazi F; Kontoyiannis DP
    Virulence; 2015; 6(4):385-94. PubMed ID: 26065323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines.
    Chandra J; McCormick TS; Imamura Y; Mukherjee PK; Ghannoum MA
    Infect Immun; 2007 May; 75(5):2612-20. PubMed ID: 17339351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for Determination of the Persister Subpopulation in Candida Albicans Biofilms.
    De Brucker K; De Cremer K; Cammue BP; Thevissen K
    Methods Mol Biol; 2016; 1333():67-72. PubMed ID: 26468100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymol inhibits Candida albicans biofilm formation and mature biofilm.
    Braga PC; Culici M; Alfieri M; Dal Sasso M
    Int J Antimicrob Agents; 2008 May; 31(5):472-7. PubMed ID: 18329858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation.
    Lee JA; Robbins N; Xie JL; Ketela T; Cowen LE
    PLoS Genet; 2016 Nov; 12(11):e1006452. PubMed ID: 27870871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative and nitrosative stress in Staphylococcus aureus biofilm.
    Arce Miranda JE; Sotomayor CE; Albesa I; Paraje MG
    FEMS Microbiol Lett; 2011 Feb; 315(1):23-9. PubMed ID: 21134223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms.
    Cataldi V; Di Campli E; Fazii P; Traini T; Cellini L; Di Giulio M
    Med Mycol; 2017 Aug; 55(6):624-634. PubMed ID: 27915303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185.
    Tan Y; Ma S; Leonhard M; Moser D; Schneider-Stickler B
    Int J Biol Macromol; 2018 Mar; 108():942-946. PubMed ID: 29104052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenesis of Candida albicans biofilm.
    Tsui C; Kong EF; Jabra-Rizk MA
    Pathog Dis; 2016 Jun; 74(4):ftw018. PubMed ID: 26960943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diphenyl diselenide (PhSe)2 inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability.
    Rosseti IB; Rocha JB; Costa MS
    J Trace Elem Med Biol; 2015 Jan; 29():289-95. PubMed ID: 25189816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host-pathogen interaction between macrophage co-cultures with Staphylococcus aureus biofilms.
    Arce Miranda JE; Baronetti JL; Paraje MG
    Eur J Clin Microbiol Infect Dis; 2021 Dec; 40(12):2563-2574. PubMed ID: 34312744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and regulation of single- and multi-species Candida albicans biofilms.
    Lohse MB; Gulati M; Johnson AD; Nobile CJ
    Nat Rev Microbiol; 2018 Jan; 16(1):19-31. PubMed ID: 29062072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms.
    Ramage G; Bachmann S; Patterson TF; Wickes BL; López-Ribot JL
    J Antimicrob Chemother; 2002 Jun; 49(6):973-80. PubMed ID: 12039889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development.
    Pinto AP; Rosseti IB; Carvalho ML; da Silva BGM; Alberto-Silva C; Costa MS
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():182-189. PubMed ID: 29221859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.