These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29294064)

  • 21. Ancestral sequence reconstruction of the CYP711 family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses.
    Vinde MH; Cao D; Chesterfield RJ; Yoneyama K; Gumulya Y; Thomson RES; Matila T; Ebert BE; Beveridge CA; Vickers CE; Gillam EMJ
    New Phytol; 2022 Sep; 235(5):1900-1912. PubMed ID: 35644901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure Elucidation and Biosynthesis of Orobanchol.
    Wakabayashi T; Ueno K; Sugimoto Y
    Front Plant Sci; 2022; 13():835160. PubMed ID: 35222492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishment of strigolactone-producing bacterium-yeast consortium.
    Wu S; Ma X; Zhou A; Valenzuela A; Zhou K; Li Y
    Sci Adv; 2021 Sep; 7(38):eabh4048. PubMed ID: 34533983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts.
    Hu L; Wang J; Yang C; Islam F; Bouwmeester HJ; Muños S; Zhou W
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant apocarotenoids: from retrograde signaling to interspecific communication.
    Moreno JC; Mi J; Alagoz Y; Al-Babili S
    Plant J; 2021 Jan; 105(2):351-375. PubMed ID: 33258195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverse Roles of MAX1 Homologues in Rice.
    Marzec M; Situmorang A; Brewer PB; Brąszewska A
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33202900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical methods in strigolactone research.
    Halouzka R; Zeljković SĆ; Klejdus B; Tarkowski P
    Plant Methods; 2020; 16():76. PubMed ID: 32514284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent progress in the chemistry and biochemistry of strigolactones.
    Yoneyama K
    J Pestic Sci; 2020 May; 45(2):45-53. PubMed ID: 32508512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol.
    Wakabayashi T; Shida K; Kitano Y; Takikawa H; Mizutani M; Sugimoto Y
    Planta; 2020 Apr; 251(5):97. PubMed ID: 32306106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Science and application of strigolactones.
    Aliche EB; Screpanti C; De Mesmaeker A; Munnik T; Bouwmeester HJ
    New Phytol; 2020 Aug; 227(4):1001-1011. PubMed ID: 32067235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.
    Wakabayashi T; Hamana M; Mori A; Akiyama R; Ueno K; Osakabe K; Osakabe Y; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Sci Adv; 2019 Dec; 5(12):eaax9067. PubMed ID: 32064317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.
    Katyayini NU; Rinne PILH; van der Schoot C
    Plant Cell Physiol; 2019 Dec; 60(12):2797-2811. PubMed ID: 31504881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis.
    Ramírez V; Pauly M
    Plant Direct; 2019 Jun; 3(6):e00149. PubMed ID: 31245785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strigolactones and their crosstalk with other phytohormones.
    Omoarelojie LO; Kulkarni MG; Finnie JF; Van Staden J
    Ann Bot; 2019 Nov; 124(5):749-767. PubMed ID: 31190074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the strigolactone analogs methyl phenlactonoates on spore germination and root colonization of arbuscular mycorrhizal fungi.
    Kountche BA; Novero M; Jamil M; Asami T; Bonfante P; Al-Babili S
    Heliyon; 2018 Nov; 4(11):e00936. PubMed ID: 30519652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants.
    Ueno K; Nakashima H; Mizutani M; Takikawa H; Sugimoto Y
    J Pestic Sci; 2018 Aug; 43(3):198-206. PubMed ID: 30363087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis.
    Butt H; Jamil M; Wang JY; Al-Babili S; Mahfouz M
    BMC Plant Biol; 2018 Aug; 18(1):174. PubMed ID: 30157762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis.
    Wakabayashi T; Ishiwa S; Shida K; Motonami N; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Plant Physiol; 2021 Apr; 185(3):902-913. PubMed ID: 33793911
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.