These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29294068)

  • 1. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering.
    Rasila TS; Pulkkinen E; Kiljunen S; Haapa-Paananen S; Pajunen MI; Salminen A; Paulin L; Vihinen M; Rice PA; Savilahti H
    Nucleic Acids Res; 2018 May; 46(9):4649-4661. PubMed ID: 29294068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.
    Rasila TS; Vihinen M; Paulin L; Haapa-Paananen S; Savilahti H
    PLoS One; 2012; 7(5):e37922. PubMed ID: 22666413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering.
    Voigt F; Wiedemann L; Zuliani C; Querques I; Sebe A; Mátés L; Izsvák Z; Ivics Z; Barabas O
    Nat Commun; 2016 Mar; 7():11126. PubMed ID: 27025571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA.
    Goldhaber-Gordon I; Williams TL; Baker TA
    J Biol Chem; 2002 Mar; 277(10):7694-702. PubMed ID: 11756423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates.
    Saariaho AH; Savilahti H
    Nucleic Acids Res; 2006; 34(10):3139-49. PubMed ID: 16757579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
    Savilahti H; Mizuuchi K
    Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal domain-deleted mu transposase exhibits increased transposition activity with low target site preference in modified buffers.
    Kim YC; Morrison SL
    J Mol Microbiol Biotechnol; 2009; 17(1):30-40. PubMed ID: 19033677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repair by the cryptic endonuclease activity of Mu transposase.
    Choi W; Harshey RM
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and positional requirements for DNA sites in a mu transpososome.
    Goldhaber-Gordon I; Early MH; Gray MK; Baker TA
    J Biol Chem; 2002 Mar; 277(10):7703-12. PubMed ID: 11756424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuA-mediated disassembly of the MuB target complex.
    Greene EC; Mizuuchi K
    Mol Cell; 2002 Dec; 10(6):1367-78. PubMed ID: 12504012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition.
    Yuan JF; Beniac DR; Chaconas G; Ottensmeyer FP
    Genes Dev; 2005 Apr; 19(7):840-52. PubMed ID: 15774720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells.
    Yant SR; Park J; Huang Y; Mikkelsen JG; Kay MA
    Mol Cell Biol; 2004 Oct; 24(20):9239-47. PubMed ID: 15456893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tn10 transposase mutants with altered transpososome unfolding properties are defective in hairpin formation.
    Humayun S; Wardle SJ; Shilton BH; Pribil PA; Liburd J; Haniford DB
    J Mol Biol; 2005 Feb; 346(3):703-16. PubMed ID: 15713457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components.
    Saariaho AH; Lamberg A; Elo S; Savilahti H
    Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progressive structural transitions within Mu transpositional complexes.
    Yanagihara K; Mizuuchi K
    Mol Cell; 2003 Jan; 11(1):215-24. PubMed ID: 12535534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome.
    Yin Z; Suzuki A; Lou Z; Jayaram M; Harshey RM
    J Mol Biol; 2007 Sep; 372(2):382-96. PubMed ID: 17669422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.