BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29294210)

  • 1. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip.
    van de Wijdeven R; Ramstad OH; Bauer US; Halaas Ø; Sandvig A; Sandvig I
    Biomed Microdevices; 2018 Jan; 20(1):9. PubMed ID: 29294210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel lab-on-chip platform enabling axotomy and neuromodulation in a multi-nodal network.
    van de Wijdeven R; Ramstad OH; Valderhaug VD; Köllensperger P; Sandvig A; Sandvig I; Halaas Ø
    Biosens Bioelectron; 2019 Sep; 140():111329. PubMed ID: 31163396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform.
    Wevers NR; van Vught R; Wilschut KJ; Nicolas A; Chiang C; Lanz HL; Trietsch SJ; Joore J; Vulto P
    Sci Rep; 2016 Dec; 6():38856. PubMed ID: 27934939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC).
    Alessandri K; Feyeux M; Gurchenkov B; Delgado C; Trushko A; Krause KH; Vignjević D; Nassoy P; Roux A
    Lab Chip; 2016 Apr; 16(9):1593-604. PubMed ID: 27025278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells.
    Bae J; Lee N; Choi W; Lee S; Ko JJ; Han BS; Lee SC; Jeon NL; Song J
    Methods Mol Biol; 2016; 1502():223-35. PubMed ID: 27062598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering controllable architecture in matrigel for 3D cell alignment.
    Jang JM; Tran SH; Na SC; Jeon NL
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2183-8. PubMed ID: 25585718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low density culture of mammalian primary neurons in compartmentalized microfluidic devices.
    Poddar S; Parasa MK; Vajanthri KY; Chaudhary A; Pancholi UV; Sarkar A; Singh AK; Mahto SK
    Biomed Microdevices; 2019 Jul; 21(3):67. PubMed ID: 31273556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preliminary study on the construction of three-dimensional hippocampal neural network by using microfluidic technology
    Kong X; Tian S; Chen T; Huang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Feb; 33(2):239-242. PubMed ID: 30739423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orchestrating cells on a chip: Employing surface acoustic waves towards the formation of neural networks.
    Brugger MS; Grundeen S; Doyle A; Theogarajan L; Wixforth A; Westerhausen C
    Phys Rev E; 2018 Jul; 98(1-1):012411. PubMed ID: 30110731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic engineered high cell density three-dimensional neural cultures.
    Cullen DK; Vukasinovic J; Glezer A; Laplaca MC
    J Neural Eng; 2007 Jun; 4(2):159-72. PubMed ID: 17409489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-neuronal cell culture and monitoring platform using a fully transparent microfluidic DEP device.
    Kim H; Lee IK; Taylor K; Richters K; Baek DH; Ryu JH; Cho SJ; Jung YH; Park DW; Novello J; Bong J; Suminski AJ; Dingle AM; Blick RH; Williams JC; Dent EW; Ma Z
    Sci Rep; 2018 Sep; 8(1):13194. PubMed ID: 30181589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering-Aligned 3D Neural Circuit in Microfluidic Device.
    Bang S; Na S; Jang JM; Kim J; Jeon NL
    Adv Healthc Mater; 2016 Jan; 5(1):159-66. PubMed ID: 26332914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system.
    Yang K; Park HJ; Han S; Lee J; Ko E; Kim J; Lee JS; Yu JH; Song KY; Cheong E; Cho SR; Chung S; Cho SW
    Biomaterials; 2015 Sep; 63():177-88. PubMed ID: 26113074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-size spheroid formation using microfluidic funnels.
    Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T
    Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.
    Vickerman V; Blundo J; Chung S; Kamm R
    Lab Chip; 2008 Sep; 8(9):1468-77. PubMed ID: 18818801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurons-on-a-Chip:
    Hong N; Nam Y
    Mol Cells; 2022 Feb; 45(2):76-83. PubMed ID: 35236782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.