These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29294268)

  • 1. Ab Initio Prediction of NMR Spin Relaxation Parameters from Molecular Dynamics Simulations.
    Chen PC; Hologne M; Walker O; Hennig J
    J Chem Theory Comput; 2018 Feb; 14(2):1009-1019. PubMed ID: 29294268
    [No Abstract]   [Full Text] [Related]  

  • 2. Accurate Prediction of Protein NMR Spin Relaxation by Means of Polarizable Force Fields. Application to Strongly Anisotropic Rotational Diffusion.
    Marcellini M; Nguyen MH; Martin M; Hologne M; Walker O
    J Phys Chem B; 2020 Jun; 124(25):5103-5112. PubMed ID: 32501695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks:  Application to the AMBER99SB Force Field.
    Showalter SA; Brüschweiler R
    J Chem Theory Comput; 2007 May; 3(3):961-75. PubMed ID: 26627416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing the Rotational Diffusion of Biomolecules via Molecular Dynamics Simulation and Quaternion Orientations.
    Chen PC; Hologne M; Walker O
    J Phys Chem B; 2017 Mar; 121(8):1812-1823. PubMed ID: 28157301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics.
    Philippopoulos M; Mandel AM; Palmer AG; Lim C
    Proteins; 1997 Aug; 28(4):481-93. PubMed ID: 9261865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2020 May; 16(5):2896-2913. PubMed ID: 32268062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Bond Vector Autocorrelation Functions from Larmor Frequency-Selective Order Parameter Analysis of NMR Relaxation Data.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2017 Jul; 13(7):3276-3289. PubMed ID: 28541675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics-Assisted Optimization of Protein NMR Relaxation Analysis.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2022 Apr; 18(4):2091-2104. PubMed ID: 35245056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Chem Phys; 2020 Feb; 152(8):084102. PubMed ID: 32113361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.
    Allnér O; Foloppe N; Nilsson L
    J Phys Chem B; 2015 Jan; 119(3):1114-28. PubMed ID: 25350574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Order Parameter Determination from Long Molecular Dynamics Trajectories for Objective Comparison with Experiment.
    Gu Y; Li DW; Brüschweiler R
    J Chem Theory Comput; 2014 Jun; 10(6):2599-607. PubMed ID: 26580780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the GROMOS force-field parameter set 45Alpha3 against nuclear magnetic resonance data of hen egg lysozyme.
    Soares TA; Daura X; Oostenbrink C; Smith LJ; van Gunsteren WF
    J Biomol NMR; 2004 Dec; 30(4):407-22. PubMed ID: 15630561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.
    Pendrill R; Engström O; Volpato A; Zerbetto M; Polimeno A; Widmalm G
    Phys Chem Chem Phys; 2016 Jan; 18(4):3086-96. PubMed ID: 26741055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of protein dynamics by MD simulations and NMR spin-relaxation.
    Trbovic N; Kim B; Friesner RA; Palmer AG
    Proteins; 2008 May; 71(2):684-94. PubMed ID: 17975832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble MD simulations restrained via crystallographic data: accurate structure leads to accurate dynamics.
    Xue Y; Skrynnikov NR
    Protein Sci; 2014 Apr; 23(4):488-507. PubMed ID: 24452989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.