BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29294281)

  • 1. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields.
    Vatamanu J; Borodin O; Bedrov D
    J Chem Theory Comput; 2018 Feb; 14(2):768-783. PubMed ID: 29294281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ewald summation approach to potential models of aqueous electrolytes involving gaussian charges and induced dipoles: formal and simulation results.
    Chialvo AA; Vlcek L
    J Phys Chem B; 2014 Nov; 118(47):13658-70. PubMed ID: 25363893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polarizable point dipoles method with electrostatic damping: implementation on a model system.
    Sala J; Guàrdia E; Masia M
    J Chem Phys; 2010 Dec; 133(23):234101. PubMed ID: 21186852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Representations and Response Models for Polarizable Force Fields.
    Li A; Voronin A; Fenley AT; Gilson MK
    J Phys Chem B; 2016 Aug; 120(33):8668-84. PubMed ID: 27248842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II.
    Yan T; Wang Y; Knox C
    J Phys Chem B; 2010 May; 114(20):6886-904. PubMed ID: 20443608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Simulation Method for Polarizable Protein Force Fields:  Application to the Simulation of BPTI in Liquid Water.
    Harder E; Kim B; Friesner RA; Berne BJ
    J Chem Theory Comput; 2005 Jan; 1(1):169-80. PubMed ID: 26641127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct summation of dipole-dipole interactions using the Wolf formalism.
    Stenqvist B; Trulsson M; Abrikosov AI; Lund M
    J Chem Phys; 2015 Jul; 143(1):014109. PubMed ID: 26156467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of double-stranded DNA in an explicit solvent model with the zero-dipole summation method.
    Arakawa T; Kamiya N; Nakamura H; Fukuda I
    PLoS One; 2013; 8(10):e76606. PubMed ID: 24124577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations.
    Bedrov D; Borodin O; Li Z; Smith GD
    J Phys Chem B; 2010 Apr; 114(15):4984-97. PubMed ID: 20337454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model.
    Jiang N; Ma J
    J Phys Chem A; 2008 Oct; 112(40):9854-67. PubMed ID: 18788721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarizable and nonpolarizable force fields for alkyl nitrates.
    Borodin O; Smith GD; Sewell TD; Bedrov D
    J Phys Chem B; 2008 Jan; 112(3):734-42. PubMed ID: 18085767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pairwise Alternatives to Ewald Summation for Calculating Long-Range Electrostatics in Ionic Liquids.
    McCann BW; Acevedo O
    J Chem Theory Comput; 2013 Feb; 9(2):944-50. PubMed ID: 26588737
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhao S; Wei H; Cieplak P; Duan Y; Luo R
    J Chem Theory Comput; 2022 Jun; 18(6):3654-3670. PubMed ID: 35537209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulations Accelerated by GPU for Biological Macromolecules with a Non-Ewald Scheme for Electrostatic Interactions.
    Mashimo T; Fukunishi Y; Kamiya N; Takano Y; Fukuda I; Nakamura H
    J Chem Theory Comput; 2013 Dec; 9(12):5599-609. PubMed ID: 26592294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatics in dissipative particle dynamics using Ewald sums with point charges.
    Terrón-Mejía KA; López-Rendón R; Goicochea AG
    J Phys Condens Matter; 2016 Oct; 28(42):425101. PubMed ID: 27541198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarizable Site Charge Model at Liquid/Solid Interfaces for Describing Surface Polarity: Application to Structure and Molecular Dynamics of Water/Rutile TiO2(110) Interface.
    Nakamura H; Ohto T; Nagata Y
    J Chem Theory Comput; 2013 Feb; 9(2):1193-201. PubMed ID: 26588762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fast, Convenient, Polarizable Electrostatic Model for Molecular Dynamics.
    Wang L; Schauperl M; Mobley DL; Bayly C; Gilson MK
    J Chem Theory Comput; 2024 Feb; 20(3):1293-1305. PubMed ID: 38240687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferable, Polarizable Force Field for Ionic Liquids.
    Goloviznina K; Canongia Lopes JN; Costa Gomes M; Pádua AAH
    J Chem Theory Comput; 2019 Nov; 15(11):5858-5871. PubMed ID: 31525922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.