These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 29294333)
1. Variability in non-invasive brain stimulation studies: Reasons and results. Guerra A; López-Alonso V; Cheeran B; Suppa A Neurosci Lett; 2020 Feb; 719():133330. PubMed ID: 29294333 [TBL] [Abstract][Full Text] [Related]
2. Solutions for managing variability in non-invasive brain stimulation studies. Guerra A; López-Alonso V; Cheeran B; Suppa A Neurosci Lett; 2020 Feb; 719():133332. PubMed ID: 29294334 [TBL] [Abstract][Full Text] [Related]
3. Relationship Between Non-invasive Brain Stimulation-induced Plasticity and Capacity for Motor Learning. López-Alonso V; Cheeran B; Fernández-del-Olmo M Brain Stimul; 2015; 8(6):1209-19. PubMed ID: 26319358 [TBL] [Abstract][Full Text] [Related]
4. Inter- and intra-subject variability of motor cortex plasticity following continuous theta-burst stimulation. Vallence AM; Goldsworthy MR; Hodyl NA; Semmler JG; Pitcher JB; Ridding MC Neuroscience; 2015 Sep; 304():266-78. PubMed ID: 26208843 [TBL] [Abstract][Full Text] [Related]
5. Inter-individual variability in response to non-invasive brain stimulation paradigms. López-Alonso V; Cheeran B; Río-Rodríguez D; Fernández-Del-Olmo M Brain Stimul; 2014; 7(3):372-80. PubMed ID: 24630849 [TBL] [Abstract][Full Text] [Related]
6. Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults. Opie GM; Vosnakis E; Ridding MC; Ziemann U; Semmler JG Brain Stimul; 2017; 10(2):298-304. PubMed ID: 28089653 [TBL] [Abstract][Full Text] [Related]
7. D2 receptor block abolishes θ burst stimulation-induced neuroplasticity in the human motor cortex. Monte-Silva K; Ruge D; Teo JT; Paulus W; Rothwell JC; Nitsche MA Neuropsychopharmacology; 2011 Sep; 36(10):2097-102. PubMed ID: 21697824 [TBL] [Abstract][Full Text] [Related]
8. Personalized depth-specific neuromodulation of the human primary motor cortex via ultrasound. Bao S; Kim H; Shettigar NB; Li Y; Lei Y J Physiol; 2024 Mar; 602(5):933-948. PubMed ID: 38358314 [TBL] [Abstract][Full Text] [Related]
9. Lasting effects of transcranial direct current stimulation on the inducibility of synaptic plasticity by paired-associative stimulation in humans. Vestring S; Wolf E; Dinkelacker J; Frase S; Hessling-Zeinen C; Insan S; Kumlehn MM; Feige B; Domschke K; Normann C; Frase L J Neuroeng Rehabil; 2024 Sep; 21(1):162. PubMed ID: 39289746 [TBL] [Abstract][Full Text] [Related]
10. Modulation of motor learning by a paired associative stimulation protocol inducing LTD-like effects. Sasaki T; Shirota Y; Kodama S; Togashi N; Sugiyama Y; Tokushige SI; Inomata-Terada S; Terao Y; Ugawa Y; Toda T; Hamada M Brain Stimul; 2018; 11(6):1314-1321. PubMed ID: 30093288 [TBL] [Abstract][Full Text] [Related]
11. Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Guerra A; Asci F; Zampogna A; D'Onofrio V; Petrucci S; Ginevrino M; Berardelli A; Suppa A Clin Neurophysiol; 2020 Nov; 131(11):2691-2699. PubMed ID: 33002731 [TBL] [Abstract][Full Text] [Related]
12. Differential Regulation of Human Paired Associative Stimulation-Induced and Theta-Burst Stimulation-Induced Plasticity by L-type and T-type Ca2+ Channels. Weise D; Mann J; Rumpf JJ; Hallermann S; Classen J Cereb Cortex; 2017 Aug; 27(8):4010-4021. PubMed ID: 27405329 [TBL] [Abstract][Full Text] [Related]
13. Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex. Hasan A; Hamada M; Nitsche MA; Ruge D; Galea JM; Wobrock T; Rothwell JC Exp Brain Res; 2012 Mar; 217(1):15-23. PubMed ID: 22143872 [TBL] [Abstract][Full Text] [Related]
14. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Suppa A; Huang YZ; Funke K; Ridding MC; Cheeran B; Di Lazzaro V; Ziemann U; Rothwell JC Brain Stimul; 2016; 9(3):323-335. PubMed ID: 26947241 [TBL] [Abstract][Full Text] [Related]
15. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. Ziemann U; Ilić TV; Pauli C; Meintzschel F; Ruge D J Neurosci; 2004 Feb; 24(7):1666-72. PubMed ID: 14973238 [TBL] [Abstract][Full Text] [Related]
16. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. Suppa A; Asci F; Guerra A Handb Clin Neurol; 2022; 184():73-89. PubMed ID: 35034759 [TBL] [Abstract][Full Text] [Related]
17. Modulation of excitability in human primary somatosensory and motor cortex by paired associative stimulation targeting the primary somatosensory cortex. Kriváneková L; Lu MK; Bliem B; Ziemann U Eur J Neurosci; 2011 Oct; 34(8):1292-300. PubMed ID: 21978102 [TBL] [Abstract][Full Text] [Related]
18. Differential response to anodal tDCS and PAS is indicative of impaired focal LTP-like plasticity in schizophrenia. Strube W; Bunse T; Nitsche MA; Palm U; Falkai P; Hasan A Behav Brain Res; 2016 Sep; 311():46-53. PubMed ID: 27185738 [TBL] [Abstract][Full Text] [Related]
19. Age-related differences of motor cortex plasticity in adults: A transcranial direct current stimulation study. Ghasemian-Shirvan E; Farnad L; Mosayebi-Samani M; Verstraelen S; Meesen RLJ; Kuo MF; Nitsche MA Brain Stimul; 2020; 13(6):1588-1599. PubMed ID: 32949779 [TBL] [Abstract][Full Text] [Related]
20. Impaired LTP- but not LTD-like cortical plasticity in Alzheimer's disease patients. Koch G; Di Lorenzo F; Bonnì S; Ponzo V; Caltagirone C; Martorana A J Alzheimers Dis; 2012; 31(3):593-9. PubMed ID: 22647254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]