BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

917 related articles for article (PubMed ID: 29294371)

  • 21. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes.
    Allison KE; Coomber BL; Bridle BW
    Immunology; 2017 Oct; 152(2):175-184. PubMed ID: 28621843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose Addiction in Cancer Therapy: Advances and Drawbacks.
    Granja S; Pinheiro C; Reis RM; Martinho O; Baltazar F
    Curr Drug Metab; 2015; 16(3):221-42. PubMed ID: 26504932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas.
    Wang B; Sun F; Dong N; Sun Z; Diao Y; Zheng C; Sun J; Yang Y; Jiang D
    Diagn Pathol; 2014 Nov; 9():211. PubMed ID: 25394492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux.
    Mathupala SP
    Recent Pat Anticancer Drug Discov; 2011 Jan; 6(1):6-14. PubMed ID: 21110820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drugging cancer metabolism: Expectations vs. reality.
    Montrose DC; Galluzzi L
    Int Rev Cell Mol Biol; 2019; 347():1-26. PubMed ID: 31451211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic potential of targeting glucose metabolism in glioma stem cells.
    Nakano I
    Expert Opin Ther Targets; 2014 Nov; 18(11):1233-6. PubMed ID: 25077882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical development of cancer therapeutics that target metabolism.
    Clem BF; O'Neal J; Klarer AC; Telang S; Chesney J
    QJM; 2016 Jun; 109(6):367-72. PubMed ID: 26428335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How the Warburg effect supports aggressiveness and drug resistance of cancer cells?
    Icard P; Shulman S; Farhat D; Steyaert JM; Alifano M; Lincet H
    Drug Resist Updat; 2018 May; 38():1-11. PubMed ID: 29857814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.
    Zois CE; Harris AL
    J Mol Med (Berl); 2016 Feb; 94(2):137-54. PubMed ID: 26882899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological role of metabolic reprogramming of cancer cells during epithelial‑mesenchymal transition (Review).
    Li M; Bu X; Cai B; Liang P; Li K; Qu X; Shen L
    Oncol Rep; 2019 Feb; 41(2):727-741. PubMed ID: 30483813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rediscovering Potential Molecular Targets for Glioma Therapy Through the Analysis of the Cell of Origin, Microenvironment and Metabolism.
    Guo X; Wang T; Huang G; Li R; Da Costa C; Li H; Lv S; Li N
    Curr Cancer Drug Targets; 2021; 21(7):558-574. PubMed ID: 33949933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The promise and peril of targeting cell metabolism for cancer therapy.
    Weiss JM
    Cancer Immunol Immunother; 2020 Feb; 69(2):255-261. PubMed ID: 31781842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cancer Metabolism as a Therapeutic Target and Review of Interventions.
    Halma MTJ; Tuszynski JA; Marik PE
    Nutrients; 2023 Oct; 15(19):. PubMed ID: 37836529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The challenges and the promise of molecular targeted therapy in malignant gliomas.
    Wang H; Xu T; Jiang Y; Xu H; Yan Y; Fu D; Chen J
    Neoplasia; 2015 Mar; 17(3):239-55. PubMed ID: 25810009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery.
    Talekar M; Boreddy SR; Singh A; Amiji M
    Expert Opin Biol Ther; 2014 Aug; 14(8):1145-59. PubMed ID: 24762115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma.
    Di K; Lomeli N; Wood SD; Vanderwal CD; Bota DA
    Oncotarget; 2016 Nov; 7(47):77457-77467. PubMed ID: 27764809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emerging targeted therapies for glioma.
    Miller JJ; Wen PY
    Expert Opin Emerg Drugs; 2016 Dec; 21(4):441-452. PubMed ID: 27809598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.