These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 29294387)

  • 1. Quenching of spontaneous fluctuations by attention in human visual cortex.
    Broday-Dvir R; Grossman S; Furman-Haran E; Malach R
    Neuroimage; 2018 May; 171():84-98. PubMed ID: 29294387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How not to study spontaneous activity.
    Logothetis NK; Murayama Y; Augath M; Steffen T; Werner J; Oeltermann A
    Neuroimage; 2009 May; 45(4):1080-9. PubMed ID: 19344685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI reveals that involuntary visual deviance processing is resource limited.
    Yucel G; McCarthy G; Belger A
    Neuroimage; 2007 Feb; 34(3):1245-52. PubMed ID: 17161626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Fluctuations in the Flexible Control of Covert Attention.
    Sali AW; Courtney SM; Yantis S
    J Neurosci; 2016 Jan; 36(2):445-54. PubMed ID: 26758836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.
    Wang W; Viswanathan S; Lee T; Grafton ST
    PLoS One; 2016; 11(7):e0158465. PubMed ID: 27391013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex.
    Yellin D; Berkovich-Ohana A; Malach R
    Neuroimage; 2015 Feb; 106():414-27. PubMed ID: 25463449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow fluctuations in attentional control of sensory cortex.
    Kam JW; Dao E; Farley J; Fitzpatrick K; Smallwood J; Schooler JW; Handy TC
    J Cogn Neurosci; 2011 Feb; 23(2):460-70. PubMed ID: 20146593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct effects of trial-driven and task Set-related control in primary visual cortex.
    Griffis JC; Elkhetali AS; Vaden RJ; Visscher KM
    Neuroimage; 2015 Oct; 120():285-297. PubMed ID: 26163806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural dynamics underlying varying attentional control facing invariant cognitive task upon invariant stimuli.
    Jiang Y; Xia J; Li S; Chen J; Wang P; Chen Q
    Neuroscience; 2017 Jun; 353():133-146. PubMed ID: 28450264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation.
    Nir Y; Hasson U; Levy I; Yeshurun Y; Malach R
    Neuroimage; 2006 May; 30(4):1313-24. PubMed ID: 16413791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous default network activity reflects behavioral variability independent of mind-wandering.
    Kucyi A; Esterman M; Riley CS; Valera EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13899-13904. PubMed ID: 27856733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.
    Woolgar A; Williams MA; Rich AN
    Neuroimage; 2015 Apr; 109():429-37. PubMed ID: 25583612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting moment-to-moment attentional state.
    Rosenberg MD; Finn ES; Constable RT; Chun MM
    Neuroimage; 2015 Jul; 114():249-56. PubMed ID: 25800207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotopy and attention to the face and house images in the human visual cortex.
    Wang B; Yan T; Ohno S; Kanazawa S; Wu J
    Exp Brain Res; 2016 Jun; 234(6):1623-35. PubMed ID: 26838358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention-modulated activity in visual cortex--more than a simple 'spotlight'.
    Müller NG; Ebeling D
    Neuroimage; 2008 Apr; 40(2):818-827. PubMed ID: 18222709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.
    Berkovich-Ohana A; Harel M; Hahamy A; Arieli A; Malach R
    Neuroimage; 2016 Jul; 135():125-34. PubMed ID: 27109713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of spontaneous fMRI activity in human visual cortex by behavioral state.
    Bianciardi M; Fukunaga M; van Gelderen P; Horovitz SG; de Zwart JA; Duyn JH
    Neuroimage; 2009 Mar; 45(1):160-8. PubMed ID: 19028588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-down biases win against focal attention in the fusiform face area.
    Reddy L; Moradi F; Koch C
    Neuroimage; 2007 Dec; 38(4):730-9. PubMed ID: 17904388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.