These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29295060)
1. cHRV Uncovering Daily Stress Dynamics Using Bio-Signal from Consumer Wearables. Hao T; Chang H; Ball M; Lin K; Zhu X Stud Health Technol Inform; 2017; 245():98-102. PubMed ID: 29295060 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. Nelson BW; Allen NB JMIR Mhealth Uhealth; 2019 Mar; 7(3):e10828. PubMed ID: 30855232 [TBL] [Abstract][Full Text] [Related]
3. Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study. Lan KC; Raknim P; Kao WF; Huang JH J Med Syst; 2018 Apr; 42(6):103. PubMed ID: 29680866 [TBL] [Abstract][Full Text] [Related]
4. Heart Rate Variability from Wearables: A Comparative Analysis Among Standard ECG, a Smart Shirt and a Wristband. Reali P; Tacchino G; Rocco G; Cerutti S; Bianchi AM Stud Health Technol Inform; 2019; 261():128-133. PubMed ID: 31156103 [TBL] [Abstract][Full Text] [Related]
5. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment. Vandecasteele K; De Cooman T; Gu Y; Cleeren E; Claes K; Paesschen WV; Huffel SV; Hunyadi B Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027928 [TBL] [Abstract][Full Text] [Related]
6. Wearable PPG sensor based alertness scoring system. Dey J; Bhowmik T; Sahoo S; Tiwari VN Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2422-2425. PubMed ID: 29060387 [TBL] [Abstract][Full Text] [Related]
7. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. Henriksen A; Haugen Mikalsen M; Woldaregay AZ; Muzny M; Hartvigsen G; Hopstock LA; Grimsgaard S J Med Internet Res; 2018 Mar; 20(3):e110. PubMed ID: 29567635 [TBL] [Abstract][Full Text] [Related]
8. [Analysis of Pulse Rate Variability and Its Application to Wearable Smart Devices]. Shi B; Chen F; Chen J; Tsau Y Zhongguo Yi Liao Qi Xie Za Zhi; 2015 Mar; 39(2):95-7. PubMed ID: 26204736 [TBL] [Abstract][Full Text] [Related]
9. A quality metric for heart rate variability from photoplethysmogram sensor data. Zanon M; Kriara L; Lipsmeier F; Nobbs D; Chatham C; Hipp J; Lindemann M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():706-709. PubMed ID: 33018085 [TBL] [Abstract][Full Text] [Related]
10. The Validity of Apple Watch Series 9 and Ultra 2 for Serial Measurements of Heart Rate Variability and Resting Heart Rate. O'Grady B; Lambe R; Baldwin M; Acheson T; Doherty C Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409260 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of Wearable Photoplethysmography Sensors for Continuous Heart Rate Monitoring in Telehealth Applications. Vinatzer H; Rzepka A; Hayn D; Ziegl A; Edegger K; Prescher S; Schreier G Stud Health Technol Inform; 2022 May; 293():205-211. PubMed ID: 35592983 [TBL] [Abstract][Full Text] [Related]
12. The Emerging Role of Wearable Technologies in Detection of Arrhythmia. Cheung CC; Krahn AD; Andrade JG Can J Cardiol; 2018 Aug; 34(8):1083-1087. PubMed ID: 30049358 [TBL] [Abstract][Full Text] [Related]
13. Effect of Missing Inter-Beat Interval Data on Heart Rate Variability Analysis Using Wrist-Worn Wearables. Baek HJ; Shin J J Med Syst; 2017 Aug; 41(10):147. PubMed ID: 28812280 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Plews DJ; Scott B; Altini M; Wood M; Kilding AE; Laursen PB Int J Sports Physiol Perform; 2017 Nov; 12(10):1324-1328. PubMed ID: 28290720 [TBL] [Abstract][Full Text] [Related]
15. Agreement between two photoplethysmography-based wearable devices for monitoring heart rate during different physical activity situations: a new analysis methodology. Alfonso C; Garcia-Gonzalez MA; Parrado E; Gil-Rojas J; Ramos-Castro J; Capdevila L Sci Rep; 2022 Sep; 12(1):15448. PubMed ID: 36104356 [TBL] [Abstract][Full Text] [Related]
16. Recommendations for determining the validity of consumer wearable heart rate devices: expert statement and checklist of the INTERLIVE Network. Mühlen JM; Stang J; Lykke Skovgaard E; Judice PB; Molina-Garcia P; Johnston W; Sardinha LB; Ortega FB; Caulfield B; Bloch W; Cheng S; Ekelund U; Brønd JC; Grøntved A; Schumann M Br J Sports Med; 2021 Jul; 55(14):767-779. PubMed ID: 33397674 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the time shift between wearable photoplethysmography sensors used for continuous heart rate monitoring. Vinatzer H; Rzepka A; Hayn D; Ziegl A; Schreier G Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4308-4311. PubMed ID: 36086137 [TBL] [Abstract][Full Text] [Related]
18. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Can YS; Chalabianloo N; Ekiz D; Ersoy C Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456 [TBL] [Abstract][Full Text] [Related]
19. Apple Watch, Wearables, and Heart Rhythm: where do we stand? Raja JM; Elsakr C; Roman S; Cave B; Pour-Ghaz I; Nanda A; Maturana M; Khouzam RN Ann Transl Med; 2019 Sep; 7(17):417. PubMed ID: 31660316 [TBL] [Abstract][Full Text] [Related]
20. Pilot Study Assessing the Influence of Skin Type on the Heart Rate Measurements Obtained by Photoplethysmography with the Apple Watch. Sañudo B; De Hoyo M; Muñoz-López A; Perry J; Abt G J Med Syst; 2019 May; 43(7):195. PubMed ID: 31119387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]