These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29295559)

  • 1. Recent Advances in 3D Printing of Aliphatic Polyesters.
    Chiulan I; Frone AN; Brandabur C; Panaitescu DM
    Bioengineering (Basel); 2017 Dec; 5(1):. PubMed ID: 29295559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications.
    Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications.
    Grivet-Brancot A; Boffito M; Ciardelli G
    Macromol Biosci; 2022 Oct; 22(10):e2200039. PubMed ID: 35488769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.
    Serra T; Mateos-Timoneda MA; Planell JA; Navarro M
    Organogenesis; 2013 Oct; 9(4):239-44. PubMed ID: 23959206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
    Lim J; You M; Li J; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():917-929. PubMed ID: 28629097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.
    Gregor A; Filová E; Novák M; Kronek J; Chlup H; Buzgo M; Blahnová V; Lukášová V; Bartoš M; Nečas A; Hošek J
    J Biol Eng; 2017; 11():31. PubMed ID: 29046717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy.
    Ratheesh G; Venugopal JR; Chinappan A; Ezhilarasu H; Sadiq A; Ramakrishna S
    ACS Biomater Sci Eng; 2017 Jul; 3(7):1175-1194. PubMed ID: 33440508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoplastic starch based blends as a highly renewable filament for fused deposition modeling 3D printing.
    Ju Q; Tang Z; Shi H; Zhu Y; Shen Y; Wang T
    Int J Biol Macromol; 2022 Oct; 219():175-184. PubMed ID: 35926678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing.
    Frone AN; Batalu D; Chiulan I; Oprea M; Gabor AR; Nicolae CA; Raditoiu V; Trusca R; Panaitescu DM
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31878292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing.
    Giordano RA; Wu BM; Borland SW; Cima LG; Sachs EM; Cima MJ
    J Biomater Sci Polym Ed; 1996; 8(1):63-75. PubMed ID: 8933291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine.
    Chung JJ; Im H; Kim SH; Park JW; Jung Y
    Front Bioeng Biotechnol; 2020; 8():586406. PubMed ID: 33251199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
    Rosenzweig DH; Carelli E; Steffen T; Jarzem P; Haglund L
    Int J Mol Sci; 2015 Jul; 16(7):15118-35. PubMed ID: 26151846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing.
    Kim M; Jeong JH; Lee JY; Capasso A; Bonaccorso F; Kang SH; Lee YK; Lee GH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11841-11848. PubMed ID: 30810305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric 3D Printed Structures for Soft-Tissue Engineering.
    Stratton S; Manoukian OS; Patel R; Wentworth A; Rudraiah S; Kumbar SG
    J Appl Polym Sci; 2018 Jan; 135(24):. PubMed ID: 29887640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.