These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 29295590)
1. Proposal of a Novel Natural Biomaterial, the Scleral Ossicle, for the Development of Vascularized Bone Tissue In Vitro. Checchi M; Bertacchini J; Grisendi G; Smargiassi A; Sola A; Messori M; Palumbo C Biomedicines; 2017 Dec; 6(1):. PubMed ID: 29295590 [TBL] [Abstract][Full Text] [Related]
2. Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications. Checchi M; Bertacchini J; Cavani F; Magarò MS; Reggiani Bonetti L; Pugliese GR; Tamma R; Ribatti D; Maurel DB; Palumbo C Biomater Sci; 2019 Dec; 8(1):413-425. PubMed ID: 31738355 [TBL] [Abstract][Full Text] [Related]
3. Transient expression of type II collagen and tissue mobilization during development of the scleral ossicle, a membranous bone, in the chick embryo. Watanabe K; Bruder SP; Caplan AI Dev Dyn; 1994 Jul; 200(3):212-26. PubMed ID: 7949369 [TBL] [Abstract][Full Text] [Related]
4. Scleral ossicles of teleostei: evolutionary and developmental trends. Franz-Odendaal TA Anat Rec (Hoboken); 2008 Feb; 291(2):161-8. PubMed ID: 18213703 [TBL] [Abstract][Full Text] [Related]
5. Osteocyte apoptosis and absence of bone remodeling in human auditory ossicles and scleral ossicles of lower vertebrates: a mere coincidence or linked processes? Palumbo C; Cavani F; Sena P; Benincasa M; Ferretti M Calcif Tissue Int; 2012 Mar; 90(3):211-8. PubMed ID: 22290503 [TBL] [Abstract][Full Text] [Related]
6. Two - three loci control scleral ossicle formation via epistasis in the cavefish Astyanax mexicanus. Lyon A; Powers AK; Gross JB; O'Quin KE PLoS One; 2017; 12(2):e0171061. PubMed ID: 28182695 [TBL] [Abstract][Full Text] [Related]
7. Morphometric analysis of the scleral bony ring with different numbers of ossicles in the eye of Coturnix coturnix japonica. Canavese B; Fazzini U; Colitti M Anat Histol Embryol; 1994 Jun; 23(2):128-36. PubMed ID: 7978347 [TBL] [Abstract][Full Text] [Related]
8. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
9. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. Byers BA; Guldberg RE; Hutmacher DW; García AJ J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095 [TBL] [Abstract][Full Text] [Related]
10. Developmental and morphological variation in the teleost craniofacial skeleton reveals an unusual mode of ossification. Franz-Odendaal TA; Ryan K; Hall BK J Exp Zool B Mol Dev Evol; 2007 Dec; 308(6):709-21. PubMed ID: 17577202 [TBL] [Abstract][Full Text] [Related]
11. Skeletal elements within teleost eyes and a discussion of their homology. Franz-Odendaal TA; Hall BK J Morphol; 2006 Nov; 267(11):1326-37. PubMed ID: 17051547 [TBL] [Abstract][Full Text] [Related]
12. Vascularization of Natural and Synthetic Bone Scaffolds. Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231 [TBL] [Abstract][Full Text] [Related]
13. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Zhang H; Zhou Y; Yu N; Ma H; Wang K; Liu J; Zhang W; Cai Z; He Y Acta Biomater; 2019 Jun; 91():82-98. PubMed ID: 30986527 [TBL] [Abstract][Full Text] [Related]
14. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
15. BMP and Hedgehog signaling during the development of scleral ossicles. Duench K; Franz-Odendaal TA Dev Biol; 2012 May; 365(1):251-8. PubMed ID: 22370003 [TBL] [Abstract][Full Text] [Related]
16. Intramembranous ossification of scleral ossicles in Chelydra serpentina. Franz-Odendaal TA Zoology (Jena); 2006; 109(1):75-81. PubMed ID: 16377163 [TBL] [Abstract][Full Text] [Related]
17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
18. Vascular endothelial growth factor signaling affects both angiogenesis and osteogenesis during the development of scleral ossicles. Jabalee J; Franz-Odendaal TA Dev Biol; 2015 Oct; 406(1):52-62. PubMed ID: 26210172 [TBL] [Abstract][Full Text] [Related]
19. Towards understanding the dose and timing effect of hydrocortisone treatment on the scleral ossicle system within the chicken eye. Hammer CL; Franz-Odendaal TA J Anat; 2018 Feb; 232(2):270-282. PubMed ID: 29210090 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]