These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 29295631)
1. Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Chen J; Stimpson SE; Fernandez-Bueno GA; Mathews CE Antioxid Redox Signal; 2018 Nov; 29(14):1361-1372. PubMed ID: 29295631 [TBL] [Abstract][Full Text] [Related]
2. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Padgett LE; Broniowska KA; Hansen PA; Corbett JA; Tse HM Ann N Y Acad Sci; 2013 Apr; 1281(1):16-35. PubMed ID: 23323860 [TBL] [Abstract][Full Text] [Related]
4. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Chávez MD; Tse HM Front Immunol; 2021; 12():703972. PubMed ID: 34276700 [TBL] [Abstract][Full Text] [Related]
5. Oxidative stress and susceptibility to mitochondrial permeability transition precedes the onset of diabetes in autoimmune non-obese diabetic mice. Malaguti C; La Guardia PG; Leite AC; Oliveira DN; de Lima Zollner RL; Catharino RR; Vercesi AE; Oliveira HC Free Radic Res; 2014 Dec; 48(12):1494-504. PubMed ID: 25236567 [TBL] [Abstract][Full Text] [Related]
6. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Koenig A; Buskiewicz-Koenig IA Antioxid Redox Signal; 2022 Mar; 36(7-9):441-461. PubMed ID: 35352943 [No Abstract] [Full Text] [Related]
7. Reactive Oxygen Species and Their Implications on CD4 Previte DM; Piganelli JD Antioxid Redox Signal; 2018 Nov; 29(14):1399-1414. PubMed ID: 28990401 [TBL] [Abstract][Full Text] [Related]
8. Miro1-mediated mitochondrial dysfunction under high nutrient stress is linked to NOD-like receptor 3 (NLRP3)-dependent inflammatory responses in rat pancreatic beta cells. Gao J; Sang M; Zhang X; Zheng T; Pan J; Dai M; Zhou L; Yang S Free Radic Biol Med; 2015 Dec; 89():322-32. PubMed ID: 26427885 [TBL] [Abstract][Full Text] [Related]
9. The role of mitochondrial ROS in antibacterial immunity. Pinegin B; Vorobjeva N; Pashenkov M; Chernyak B J Cell Physiol; 2018 May; 233(5):3745-3754. PubMed ID: 28771715 [TBL] [Abstract][Full Text] [Related]
10. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Burg AR; Tse HM Antioxid Redox Signal; 2018 Nov; 29(14):1373-1398. PubMed ID: 29037052 [TBL] [Abstract][Full Text] [Related]
11. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Eftekharpour E; Fernyhough P Antioxid Redox Signal; 2022 Sep; 37(7-9):578-596. PubMed ID: 34416846 [No Abstract] [Full Text] [Related]
12. Role of genetics in resistance to type 1 diabetes. Chen J; Gusdon AM; Mathews CE Diabetes Metab Res Rev; 2011 Nov; 27(8):849-53. PubMed ID: 22069272 [TBL] [Abstract][Full Text] [Related]
13. Cadmium exposure suppresses insulin secretion through mtROS-mediated mitochondrial dysfunction and inflammatory response in pancreatic beta cells. Hong H; He H; Lin X; Hayuehashi T; Xu J; Zhang J; Xu Y; Tong T; Lu Y; Zhou Z J Trace Elem Med Biol; 2022 May; 71():126952. PubMed ID: 35183883 [TBL] [Abstract][Full Text] [Related]
14. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Vig S; Lambooij JM; Zaldumbide A; Guigas B Front Immunol; 2021; 12():669492. PubMed ID: 33936111 [TBL] [Abstract][Full Text] [Related]
15. Regulation of type I interferon responses by mitochondria-derived reactive oxygen species in plasmacytoid dendritic cells. Agod Z; Fekete T; Budai MM; Varga A; Szabo A; Moon H; Boldogh I; Biro T; Lanyi A; Bacsi A; Pazmandi K Redox Biol; 2017 Oct; 13():633-645. PubMed ID: 28818792 [TBL] [Abstract][Full Text] [Related]
16. Oxidative stress and redox modulation potential in type 1 diabetes. Delmastro MM; Piganelli JD Clin Dev Immunol; 2011; 2011():593863. PubMed ID: 21647409 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria-meditated pathways of organ failure upon inflammation. Kozlov AV; Lancaster JR; Meszaros AT; Weidinger A Redox Biol; 2017 Oct; 13():170-181. PubMed ID: 28578275 [TBL] [Abstract][Full Text] [Related]
18. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. Previte DM; O'Connor EC; Novak EA; Martins CP; Mollen KP; Piganelli JD PLoS One; 2017; 12(4):e0175549. PubMed ID: 28426686 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Sivitz WI; Yorek MA Antioxid Redox Signal; 2010 Apr; 12(4):537-77. PubMed ID: 19650713 [TBL] [Abstract][Full Text] [Related]
20. Nuclear and mitochondrial interaction involving mt-Nd2 leads to increased mitochondrial reactive oxygen species production. Gusdon AM; Votyakova TV; Reynolds IJ; Mathews CE J Biol Chem; 2007 Feb; 282(8):5171-9. PubMed ID: 17189252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]