These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 29295784)
1. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. Kawabe Y; Komatsu S; Komatsu S; Murakami M; Ito A; Sakuma T; Nakamura T; Yamamoto T; Kamihira M J Biosci Bioeng; 2018 May; 125(5):599-605. PubMed ID: 29295784 [TBL] [Abstract][Full Text] [Related]
2. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids. Sakuma T; Takenaga M; Kawabe Y; Nakamura T; Kamihira M; Yamamoto T Int J Mol Sci; 2015 Oct; 16(10):23849-66. PubMed ID: 26473830 [TBL] [Abstract][Full Text] [Related]
3. Accumulative scFv-Fc antibody gene integration into the hprt chromosomal locus of Chinese hamster ovary cells. Wang X; Kawabe Y; Kato R; Hada T; Ito A; Yamana Y; Kondo M; Kamihira M J Biosci Bioeng; 2017 Nov; 124(5):583-590. PubMed ID: 28662917 [TBL] [Abstract][Full Text] [Related]
4. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells. Shin SW; Lee JS Biotechnol Bioeng; 2020 Jun; 117(6):1895-1903. PubMed ID: 32086804 [TBL] [Abstract][Full Text] [Related]
5. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nakade S; Tsubota T; Sakane Y; Kume S; Sakamoto N; Obara M; Daimon T; Sezutsu H; Yamamoto T; Sakuma T; Suzuki KT Nat Commun; 2014 Nov; 5():5560. PubMed ID: 25410609 [TBL] [Abstract][Full Text] [Related]
6. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
7. Targeted integration in CHO cells using CRIS-PITCh/Bxb1 recombinase-mediated cassette exchange hybrid system. Ghanbari S; Bayat E; Azizi M; Fard-Esfahani P; Modarressi MH; Davami F Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):769-783. PubMed ID: 36536089 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577 [TBL] [Abstract][Full Text] [Related]
9. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Shin SW; Kim D; Lee JS Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701 [TBL] [Abstract][Full Text] [Related]
10. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Lee JS; Grav LM; Pedersen LE; Lee GM; Kildegaard HF Biotechnol Bioeng; 2016 Nov; 113(11):2518-23. PubMed ID: 27159230 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells. Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048 [TBL] [Abstract][Full Text] [Related]
12. A system for site-specific integration of transgenes in mammalian cells. Chi X; Zheng Q; Jiang R; Chen-Tsai RY; Kong LJ PLoS One; 2019; 14(7):e0219842. PubMed ID: 31344144 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells. Uno N; Hiramatsu K; Uno K; Komoto S; Kazuki Y; Oshimura M Sci Rep; 2017 Oct; 7(1):12739. PubMed ID: 28986519 [TBL] [Abstract][Full Text] [Related]
14. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site. Kawabe Y; Inao T; Komatsu S; Huang G; Ito A; Omasa T; Kamihira M J Biosci Bioeng; 2017 Mar; 123(3):390-397. PubMed ID: 27856232 [TBL] [Abstract][Full Text] [Related]
15. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126 [TBL] [Abstract][Full Text] [Related]
16. Targeted integration into pseudo attP sites of CHO cells using CRISPR/Cas9. Pourtabatabaei S; Ghanbari S; Damavandi N; Bayat E; Raigani M; Zeinali S; Davami F J Biotechnol; 2021 Aug; 337():1-7. PubMed ID: 34157351 [TBL] [Abstract][Full Text] [Related]
17. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459 [TBL] [Abstract][Full Text] [Related]
18. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691 [TBL] [Abstract][Full Text] [Related]
19. CHO cell engineering via targeted integration of circular miR-21 decoy using CRISPR/RMCE hybrid system. Adibzadeh S; Amiri S; Barkhordari F; Mowla SJ; Bayat H; Ghanbari S; Faghihi F; Davami F Appl Microbiol Biotechnol; 2024 Aug; 108(1):434. PubMed ID: 39120640 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna. Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]