These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 29295994)

  • 41. Why are MD simulated protein folding times wrong?
    Nerukhdn D
    Adv Exp Med Biol; 2010; 680():321-6. PubMed ID: 20865515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perspective: Markov models for long-timescale biomolecular dynamics.
    Schwantes CR; McGibbon RT; Pande VS
    J Chem Phys; 2014 Sep; 141(9):090901. PubMed ID: 25194354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variational selection of features for molecular kinetics.
    Scherer MK; Husic BE; Hoffmann M; Paul F; Wu H; Noé F
    J Chem Phys; 2019 May; 150(19):194108. PubMed ID: 31117766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complex pathways in folding of protein G explored by simulation and experiment.
    Lapidus LJ; Acharya S; Schwantes CR; Wu L; Shukla D; King M; DeCamp SJ; Pande VS
    Biophys J; 2014 Aug; 107(4):947-55. PubMed ID: 25140430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction.
    Dong J; Wang S; Cui W; Sun X; Guo H; Yan H; Vogel H; Wang Z; Yuan S
    J Chem Theory Comput; 2024 Jun; 20(11):4499-4513. PubMed ID: 38394691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Folding and misfolding of the collagen triple helix: Markov analysis of molecular dynamics simulations.
    Park S; Klein TE; Pande VS
    Biophys J; 2007 Dec; 93(12):4108-15. PubMed ID: 17766343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.
    Patra TK; Meenakshisundaram V; Hung JH; Simmons DS
    ACS Comb Sci; 2017 Feb; 19(2):96-107. PubMed ID: 27997791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-stage optimization of a deep model: A case study on ground motion modeling.
    Tahmassebi A; Gandomi AH; Fong S; Meyer-Baese A; Foo SY
    PLoS One; 2018; 13(9):e0203829. PubMed ID: 30231077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitivity of peptide conformational dynamics on clustering of a classical molecular dynamics trajectory.
    Jensen CH; Nerukh D; Glen RC
    J Chem Phys; 2008 Mar; 128(11):115107. PubMed ID: 18361622
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimal Dimensionality Reduction of Multistate Kinetic and Markov-State Models.
    Hummer G; Szabo A
    J Phys Chem B; 2015 Jul; 119(29):9029-37. PubMed ID: 25296279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning.
    Konovalov KA; Unarta IC; Cao S; Goonetilleke EC; Huang X
    JACS Au; 2021 Sep; 1(9):1330-1341. PubMed ID: 34604842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics from Replica Exchange Molecular Dynamics Simulations.
    Stelzl LS; Hummer G
    J Chem Theory Comput; 2017 Aug; 13(8):3927-3935. PubMed ID: 28657736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating Molecular Kinetics by Variationally Optimized Diffusion Maps.
    Boninsegna L; Gobbo G; Noé F; Clementi C
    J Chem Theory Comput; 2015 Dec; 11(12):5947-60. PubMed ID: 26580713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules.
    Noé F; Wu H; Prinz JH; Plattner N
    J Chem Phys; 2013 Nov; 139(18):184114. PubMed ID: 24320261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics.
    Prinz JH; Chodera JD; Pande VS; Swope WC; Smith JC; Noé F
    J Chem Phys; 2011 Jun; 134(24):244108. PubMed ID: 21721613
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.
    Nedialkova LV; Amat MA; Kevrekidis IG; Hummer G
    J Chem Phys; 2014 Sep; 141(11):114102. PubMed ID: 25240340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Equilibrium distribution from distributed computing (simulations of protein folding).
    Scalco R; Caflisch A
    J Phys Chem B; 2011 May; 115(19):6358-65. PubMed ID: 21517045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simplification of irreversible Markov chains by removal of states with fast leaving rates.
    Jia C
    J Theor Biol; 2016 Jul; 400():129-37. PubMed ID: 27067245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models.
    Pan X; Schwartz SD
    J Phys Chem B; 2016 Jul; 120(27):6612-20. PubMed ID: 27347759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece.
    Jayachandran G; Vishal V; Pande VS
    J Chem Phys; 2006 Apr; 124(16):164902. PubMed ID: 16674165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.