BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

617 related articles for article (PubMed ID: 29295995)

  • 1. Perturbation-response genes reveal signaling footprints in cancer gene expression.
    Schubert M; Klinger B; Klünemann M; Sieber A; Uhlitz F; Sauer S; Garnett MJ; Blüthgen N; Saez-Rodriguez J
    Nat Commun; 2018 Jan; 9(1):20. PubMed ID: 29295995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of regulatory knowledge from human to mouse for functional genomics analysis.
    Holland CH; Szalai B; Saez-Rodriguez J
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194431. PubMed ID: 31525460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driver gene mutations based clustering of tumors: methods and applications.
    Zhang W; Flemington EK; Zhang K
    Bioinformatics; 2018 Jul; 34(13):i404-i411. PubMed ID: 29950003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages.
    Yang M; Topaloglu U; Petty WJ; Pagni M; Foley KL; Grant SC; Robinson M; Bitting RL; Thomas A; Alistar AT; Desnoyers RJ; Goodman M; Albright C; Porosnicu M; Vatca M; Qasem SA; DeYoung B; Kytola V; Nykter M; Chen K; Levine EA; Staren ED; D'Agostino RB; Petro RM; Blackstock W; Powell BL; Abraham E; Pasche B; Zhang W
    J Hematol Oncol; 2017 May; 10(1):100. PubMed ID: 28472989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.
    Glinsky GV
    Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label propagation defines signaling networks associated with recurrently mutated cancer genes.
    Cakir M; Mukherjee S; Wood KC
    Sci Rep; 2019 Jun; 9(1):9401. PubMed ID: 31253832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes.
    Wang X; Zhang Y; Han ZG; He KY
    Medicine (Baltimore); 2016 Feb; 95(8):e2697. PubMed ID: 26937901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components.
    Chang WH; Lai AG
    Mol Med; 2019 Nov; 25(1):46. PubMed ID: 31684858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting clinical outcomes of cancer patients with a p53 deficiency gene signature.
    Schaafsma E; Takacs EM; Kaur S; Cheng C; Kurokawa M
    Sci Rep; 2022 Jan; 12(1):1317. PubMed ID: 35079034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative survey of functional footprints of EGFR pathway mutations in human cancers.
    Lane A; Segura-Cabrera A; Komurov K
    Oncogene; 2014 Oct; 33(43):5078-89. PubMed ID: 24166508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pan-cancer onco-signatures reveal a novel mitochondrial subtype of luminal breast cancer with specific regulators.
    Simeone I; Ceccarelli M
    J Transl Med; 2023 Jan; 21(1):55. PubMed ID: 36717859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-Based Method for Inferring Cancer Progression at the Pathway Level from Cross-Sectional Mutation Data.
    Wu H; Gao L; Kasabov NK
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1036-1044. PubMed ID: 26915128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional genomics reveals diverse cellular processes that modulate tumor cell response to oxaliplatin.
    Harradine KA; Kassner M; Chow D; Aziz M; Von Hoff DD; Baker JB; Yin H; Pelham RJ
    Mol Cancer Res; 2011 Feb; 9(2):173-82. PubMed ID: 21169384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying cancer driver genes in tumor genome sequencing studies.
    Youn A; Simon R
    Bioinformatics; 2011 Jan; 27(2):175-81. PubMed ID: 21169372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of accumulated alterations in driver and passenger genes on response to radiation therapy.
    Seo Y; Tamari K; Takahashi Y; Minami K; Isohashi F; Suzuki O; Sumida I; Ogawa K
    Br J Radiol; 2020 May; 93(1109):20190625. PubMed ID: 32031414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.