BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29296485)

  • 1. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media.
    Li J; Qiu L; Poon CS; Sunar U
    Biomed Opt Express; 2017 Dec; 8(12):5518-5532. PubMed ID: 29296485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles.
    Cheng X; Chen H; Sie EJ; Marsili F; Boas DA
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
    Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study.
    Zonios G; Dimou A
    Biomed Opt Express; 2011 Dec; 2(12):3284-94. PubMed ID: 22162819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function.
    Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA
    Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling.
    Wu MM; Chan ST; Mazumder D; Tamborini D; Stephens KA; Deng B; Farzam P; Chu JY; Franceschini MA; Qu JZ; Carp SA
    Neurophotonics; 2021 Jan; 8(1):015001. PubMed ID: 33437846
    [No Abstract]   [Full Text] [Related]  

  • 7. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media.
    Yudovsky D; Pilon L
    Appl Opt; 2009 Dec; 48(35):6670-83. PubMed ID: 20011007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
    Wang Q; Pan M; Zang Z; Li DD
    J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth sensitivity of frequency domain optical measurements in diffusive media.
    Binzoni T; Sassaroli A; Torricelli A; Spinelli L; Farina A; Durduran T; Cavalieri S; Pifferi A; Martelli F
    Biomed Opt Express; 2017 Jun; 8(6):2990-3004. PubMed ID: 28663921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical model of blood flow measurement by diffuse correlation spectroscopy.
    Sakadžic S; Boas DA; Carp S
    J Biomed Opt; 2017 Feb; 22(2):27006. PubMed ID: 28241276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media.
    Borycki D; Kholiqov O; Chong SP; Srinivasan VJ
    Opt Express; 2016 Jan; 24(1):329-54. PubMed ID: 26832264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media.
    Borycki D; Kholiqov O; Srinivasan VJ
    Optica; 2016; 3(12):1471-1476. PubMed ID: 30381798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband ultraviolet-visible optical property measurement in layered turbid media.
    Wang Q; Le D; Ramella-Roman J; Pfefer J
    Biomed Opt Express; 2012 Jun; 3(6):1226-40. PubMed ID: 22741070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a simulation approach to optimize time-domain diffuse correlation spectroscopy measurement on human head.
    Qiu L; Cheng H; Torricelli A; Li J
    Neurophotonics; 2018 Apr; 5(2):025007. PubMed ID: 29795775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial blurring in laser speckle imaging in inhomogeneous turbid media.
    Vitomir L; Sprakel J; van der Gucht J
    Sci Rep; 2017 Dec; 7(1):16879. PubMed ID: 29203904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved Fourier optical diffuse tomography.
    Xu M; Lax M; Alfano RR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1535-42. PubMed ID: 11444546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.