These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29296663)

  • 1. Computer-Assisted Retrosynthesis Based on Molecular Similarity.
    Coley CW; Rogers L; Green WH; Jensen KF
    ACS Cent Sci; 2017 Dec; 3(12):1237-1245. PubMed ID: 29296663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarity based enzymatic retrosynthesis.
    Sankaranarayanan K; Heid E; Coley CW; Verma D; Green WH; Jensen KF
    Chem Sci; 2022 May; 13(20):6039-6053. PubMed ID: 35685792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention.
    Chen S; Jung Y
    JACS Au; 2021 Oct; 1(10):1612-1620. PubMed ID: 34723264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy.
    Schwaller P; Petraglia R; Zullo V; Nair VH; Haeuselmann RA; Pisoni R; Bekas C; Iuliano A; Laino T
    Chem Sci; 2020 Mar; 11(12):3316-3325. PubMed ID: 34122839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic retrosynthetic route planning using template-free models.
    Lin K; Xu Y; Pei J; Lai L
    Chem Sci; 2020 Mar; 11(12):3355-3364. PubMed ID: 34122843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrosynthetic strategies and their impact on synthesis of arcutane natural products.
    McCowen SV; Doering NA; Sarpong R
    Chem Sci; 2020 Aug; 11(29):7538-7552. PubMed ID: 33552460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Step Retrosynthesis Prediction Based on the Identification of Potential Disconnection Sites Using Molecular Substructure Fingerprints.
    Hasic H; Ishida T
    J Chem Inf Model; 2021 Feb; 61(2):641-652. PubMed ID: 33534997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating and clustering retrosynthesis pathways with learned strategy.
    Mo Y; Guan Y; Verma P; Guo J; Fortunato ME; Lu Z; Coley CW; Jensen KF
    Chem Sci; 2020 Nov; 12(4):1469-1478. PubMed ID: 34163910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substructure-based neural machine translation for retrosynthetic prediction.
    Ucak UV; Kang T; Ko J; Lee J
    J Cheminform; 2021 Jan; 13(1):4. PubMed ID: 33431017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Retrosynthetic Planning through Simulated Experience.
    Schreck JS; Coley CW; Bishop KJM
    ACS Cent Sci; 2019 Jun; 5(6):970-981. PubMed ID: 31263756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses.
    Cadeddu A; Wylie EK; Jurczak J; Wampler-Doty M; Grzybowski BA
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8108-12. PubMed ID: 25044611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments.
    Ucak UV; Ashyrmamatov I; Ko J; Lee J
    Nat Commun; 2022 Mar; 13(1):1186. PubMed ID: 35246540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical Retrosynthesis.
    Smith JM; Harwood SJ; Baran PS
    Acc Chem Res; 2018 Aug; 51(8):1807-1817. PubMed ID: 30070821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven Chemical Reaction Prediction and Retrosynthesis.
    Nair VH; Schwaller P; Laino T
    Chimia (Aarau); 2019 Dec; 73(12):997-1000. PubMed ID: 31883550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planning chemical syntheses with deep neural networks and symbolic AI.
    Segler MHS; Preuss M; Waller MP
    Nature; 2018 Mar; 555(7698):604-610. PubMed ID: 29595767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.
    Kayala MA; Baldi P
    J Chem Inf Model; 2012 Oct; 52(10):2526-40. PubMed ID: 22978639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.