BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29297274)

  • 1. Development of models for predicting Torsade de Pointes cardiac arrhythmias using perceptron neural networks.
    Sharifi M; Buzatu D; Harris S; Wilkes J
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):497. PubMed ID: 29297274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
    Mirams GR; Cui Y; Sher A; Fink M; Cooper J; Heath BM; McMahon NC; Gavaghan DJ; Noble D
    Cardiovasc Res; 2011 Jul; 91(1):53-61. PubMed ID: 21300721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rabbit Langendorff heart proarrhythmia model: predictive value for clinical identification of Torsades de Pointes.
    Lawrence CL; Bridgland-Taylor MH; Pollard CE; Hammond TG; Valentin JP
    Br J Pharmacol; 2006 Dec; 149(7):845-60. PubMed ID: 17031389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iatrogenic QT Abnormalities and Fatal Arrhythmias: Mechanisms and Clinical Significance.
    Cubeddu LX
    Curr Cardiol Rev; 2009 Aug; 5(3):166-76. PubMed ID: 20676275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A greedy classifier optimization strategy to assess ion channel blocking activity and pro-arrhythmia in hiPSC-cardiomyocytes.
    Raphel F; De Korte T; Lombardi D; Braam S; Gerbeau JF
    PLoS Comput Biol; 2020 Sep; 16(9):e1008203. PubMed ID: 32976482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing proarrhythmic potential of environmental chemicals using a high throughput in vitro-in silico model with human induced pluripotent stem cell-derived cardiomyocytes.
    Lin HC; Rusyn I; Chiu WA
    ALTEX; 2024 Jan; 41(1):37-49. PubMed ID: 37921411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of cardiac pro-arrhythmic risks using the artificial neural network with ToR-ORd
    Mahardika T NQ; Qauli AI; Marcellinus A; Lim KM
    Front Physiol; 2024; 15():1374355. PubMed ID: 38638275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Quinidine-Induced Torsades de Pointes Risks Using a Whole-Body Physiologically Based Pharmacokinetic Model Linked to Cardiac Ionic Current Inhibition.
    Zhang Z; Zhou H; Yang Y; Liu L; Liu X
    Clin Pharmacol Ther; 2024 Mar; 115(3):616-626. PubMed ID: 38117225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 4-Aminopyridine on Cloned hERG Channels Expressed in Mammalian Cells.
    Renganathan M; Sidach S; Blight AR
    Arch Drug Inf; 2009 Sep; 2(3):51-57. PubMed ID: 19915712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro models of proarrhythmia.
    Lawrence CL; Pollard CE; Hammond TG; Valentin JP
    Br J Pharmacol; 2008 Aug; 154(7):1516-22. PubMed ID: 18516075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive Male-to-Female Translation of Cardiac Electrophysiological Response to Drugs.
    Hellgren KT; Ni H; Morotti S; Grandi E
    JACC Clin Electrophysiol; 2023 Dec; 9(12):2642-2648. PubMed ID: 37768254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug trapping in hERG K
    Linder T; Bernsteiner H; Saxena P; Bauer F; Erker T; Timin E; Hering S; Stary-Weinzinger A
    Medchemcomm; 2016 Mar; 7(3):512-518. PubMed ID: 28337337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective Inhibition of the hERG1 Potassium Channel.
    Grilo LS; Carrupt PA; Abriel H
    Front Pharmacol; 2010; 1():137. PubMed ID: 21833176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostics of Torsade de Pointes in an oncohematology patient: A case report.
    Bilmakhanbetova A; Zhakhina G; Beisenbay M; Marat D
    Clin Case Rep; 2021 Jun; 9(6):e04292. PubMed ID: 34194796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Huffing and twist: Fatal Torsade de pointes associated with Tetrafluoroethane Inhalation and amphetamine use.
    Burke J; Haigney MCP; Farasat M; Mehler PS; Krantz MJ
    Clin Case Rep; 2021 Aug; 9(8):. PubMed ID: 34466229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a pharmaceutical database as an aid to the nonclinical detection of drug-induced cardiac toxicity.
    De Alwis D; Foley CM; Herman E; Hill AP; Hoffmann PK; Kanda Y; Kaushik E; Pierson J; Puglisi R; Shi H; Yang X; Pugsley MK
    J Pharmacol Toxicol Methods; 2024 Apr; ():107507. PubMed ID: 38636673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Network Differential Equations For Ion Channel Modelling.
    Lei CL; Mirams GR
    Front Physiol; 2021; 12():708944. PubMed ID: 34421652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels.
    Silva JR
    Biophys J; 2018 Jan; 114(2):259-266. PubMed ID: 29401425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association.
    Armoundas AA; Narayan SM; Arnett DK; Spector-Bagdady K; Bennett DA; Celi LA; Friedman PA; Gollob MH; Hall JL; Kwitek AE; Lett E; Menon BK; Sheehan KA; Al-Zaiti SS;
    Circulation; 2024 Apr; 149(14):e1028-e1050. PubMed ID: 38415358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Quantitative Models in Safety Assessment: A Case Study to Show Impact of Dose-Response Inference on hERG Inhibition Models.
    Melnikov F; Anger LT; Hasselgren C
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.