BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 29297324)

  • 21. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
    Jang EH; Park BJ; Park MS; Kim SH; Sohn JH
    J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multimodal emotion recognition by combining physiological signals and facial expressions: a preliminary study.
    Kortelainen J; Tiinanen S; Huang X; Li X; Laukka S; Pietikäinen M; Seppänen T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5238-41. PubMed ID: 23367110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An affective computing approach to physiological emotion specificity: toward subject-independent and stimulus-independent classification of film-induced emotions.
    Kolodyazhniy V; Kreibig SD; Gross JJ; Roth WT; Wilhelm FH
    Psychophysiology; 2011 Jul; 48(7):908-22. PubMed ID: 21261632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition.
    Huang Y; Yang J; Liao P; Pan J
    Comput Intell Neurosci; 2017; 2017():2107451. PubMed ID: 29056963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals.
    Oh S; Lee JY; Kim DK
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors.
    Al Machot F; Elmachot A; Ali M; Al Machot E; Kyamakya K
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emotion Recognition from EEG and Facial Expressions: a Multimodal Approach.
    Chaparro V; Gomez A; Salgado A; Quintero OL; Lopez N; Villa LF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():530-533. PubMed ID: 30440451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of Physiological Responses Induced by Basic Emotions: A Pilot Study.
    Jang EH; Byun S; Park MS; Sohn JH
    J Physiol Anthropol; 2019 Nov; 38(1):15. PubMed ID: 31779708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in male and female subjective experience and physiological reactions to emotional stimuli.
    Poláčková Šolcová I; Lačev A
    Int J Psychophysiol; 2017 Jul; 117():75-82. PubMed ID: 28454989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The facilitative effect of facial expression on the self-generation of emotion.
    Hess U; Kappas A; McHugo GJ; Lanzetta JT; Kleck RE
    Int J Psychophysiol; 1992 May; 12(3):251-65. PubMed ID: 1639672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intelligibility of emotional speech in younger and older adults.
    Dupuis K; Pichora-Fuller MK
    Ear Hear; 2014; 35(6):695-707. PubMed ID: 25127327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facial Emotion Recognition and Expression in Parkinson's Disease: An Emotional Mirror Mechanism?
    Ricciardi L; Visco-Comandini F; Erro R; Morgante F; Bologna M; Fasano A; Ricciardi D; Edwards MJ; Kilner J
    PLoS One; 2017; 12(1):e0169110. PubMed ID: 28068393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios.
    Uria-Rivas R; Rodriguez-Sanchez MC; Santos OC; Vaquero J; Boticario JG
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An EEG Database and Its Initial Benchmark Emotion Classification Performance.
    Seal A; Reddy PPN; Chaithanya P; Meghana A; Jahnavi K; Krejcar O; Hudak R
    Comput Math Methods Med; 2020; 2020():8303465. PubMed ID: 32831902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method.
    Goshvarpour A; Abbasi A; Goshvarpour A
    Biomed J; 2017 Dec; 40(6):355-368. PubMed ID: 29433839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Liu D; Bai O
    Technol Health Care; 2018; 26(S1):327-335. PubMed ID: 29758967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emotion Recognition From Multimodal Physiological Signals Using a Regularized Deep Fusion of Kernel Machine.
    Zhang X; Liu J; Shen J; Li S; Hou K; Hu B; Gao J; Zhang T; Hu B
    IEEE Trans Cybern; 2021 Sep; 51(9):4386-4399. PubMed ID: 32413939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.