These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29297370)

  • 1. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.
    Wei J; Hu X; Zou X; Tian T
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):72. PubMed ID: 29297370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to infer dynamic protein-gene interactions - A case study of the human P53 protein.
    Wang J; Wu Q; Hu XT; Tian T
    Methods; 2016 Nov; 110():3-13. PubMed ID: 27514497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An information theoretic method for reconstructing local regulatory network modules from polymorphic samples.
    Jagalur M; Kulp D
    Comput Syst Bioinformatics Conf; 2007; 6():133-43. PubMed ID: 17951819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty.
    Hajiramezanali E; Imani M; Braga-Neto U; Qian X; Dougherty ER
    BMC Genomics; 2019 Jun; 20(Suppl 6):435. PubMed ID: 31189480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
    Pájaro M; Alonso AA; Otero-Muras I; Vázquez C
    J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-linear reverse-engineering method for inferring genetic regulatory networks.
    Wu S; Cui T; Zhang X; Tian T
    PeerJ; 2020; 8():e9065. PubMed ID: 32391205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gene network simulator to assess reverse engineering algorithms.
    Di Camillo B; Toffolo G; Cobelli C
    Ann N Y Acad Sci; 2009 Mar; 1158():125-42. PubMed ID: 19348638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3off2: A network reconstruction algorithm based on 2-point and 3-point information statistics.
    Affeldt S; Verny L; Isambert H
    BMC Bioinformatics; 2016 Jan; 17 Suppl 2(Suppl 2):12. PubMed ID: 26823190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IRIS: a method for reverse engineering of regulatory relations in gene networks.
    Morganella S; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2009 Dec; 10():444. PubMed ID: 20030818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring gene regulatory networks using a time-delayed mass action model.
    Zhao Y; Jiang M; Chen Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1650012. PubMed ID: 27093908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks.
    Ironi L; Panzeri L
    BMC Bioinformatics; 2009 Oct; 10 Suppl 12(Suppl 12):S14. PubMed ID: 19828074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution.
    Takenaka Y; Seno S; Matsuda H
    J Bioinform Comput Biol; 2015 Oct; 13(5):1543002. PubMed ID: 26508425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge.
    Geier F; Timmer J; Fleck C
    BMC Syst Biol; 2007 Feb; 1():11. PubMed ID: 17408501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically Bayesian robust classifier for single-cell gene expression trajectories in gene regulatory networks.
    Karbalayghareh A; Braga-Neto U; Dougherty ER
    BMC Syst Biol; 2018 Mar; 12(Suppl 3):23. PubMed ID: 29589564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient reverse-engineering of a developmental gene regulatory network.
    Crombach A; Wotton KR; Cicin-Sain D; Ashyraliyev M; Jaeger J
    PLoS Comput Biol; 2012; 8(7):e1002589. PubMed ID: 22807664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.
    Cordero P; Stuart JM
    Pac Symp Biocomput; 2017; 22():576-587. PubMed ID: 27897008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.