BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29297388)

  • 1. Revealing protein functions based on relationships of interacting proteins and GO terms.
    Teng Z; Guo M; Liu X; Tian Z; Che K
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):27. PubMed ID: 29297388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein function prediction from protein-protein interaction network using gene ontology based neighborhood analysis and physico-chemical features.
    Saha S; Prasad A; Chatterjee P; Basu S; Nasipuri M
    J Bioinform Comput Biol; 2018 Dec; 16(6):1850025. PubMed ID: 30400756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction.
    Stojanova D; Ceci M; Malerba D; Dzeroski S
    BMC Bioinformatics; 2013 Sep; 14():285. PubMed ID: 24070402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein functions by using unbalanced bi-random walk algorithm on protein-protein interaction network and functional interrelationship network.
    Peng W; Wang J; Chen L; Zhong J; Zhang Z; Pan Y
    Curr Protein Pept Sci; 2014; 15(6):529-39. PubMed ID: 25059324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Semantic Similarity between Proteins Using Information Content and Topological Properties of the Gene Ontology Graph.
    Dutta P; Basu S; Kundu M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):839-849. PubMed ID: 28371781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology.
    Zhang YH; Huang F; Li J; Shen W; Chen L; Feng K; Huang T; Cai YD
    Protein J; 2024 Jun; 43(3):477-486. PubMed ID: 38436837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IAS: Interaction Specific GO Term Associations for Predicting Protein-Protein Interaction Networks.
    Yerneni S; Khan IK; Wei Q; Kihara D
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1247-1258. PubMed ID: 26415209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-label ℓ
    Mei S; Zhang K
    Sci Rep; 2016 Nov; 6():36453. PubMed ID: 27819359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact p-values for global network alignments via combinatorial analysis of shared GO terms : REFANGO: Rigorous Evaluation of Functional Alignments of Networks using Gene Ontology.
    Hayes WB
    J Math Biol; 2024 Mar; 88(5):50. PubMed ID: 38551701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating network topology, gene expression data and GO annotation information for protein complex prediction.
    Zhang W; Xu J; Li Y; Zou X
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950001. PubMed ID: 30803297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale identification and characterization of moonlighting proteins.
    Khan I; Chen Y; Dong T; Hong X; Takeuchi R; Mori H; Kihara D
    Biol Direct; 2014 Dec; 9():30. PubMed ID: 25497125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data.
    Xu T; Du L; Zhou Y
    BMC Bioinformatics; 2008 Nov; 9():472. PubMed ID: 18986551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. False positive reduction in protein-protein interaction predictions using gene ontology annotations.
    Mahdavi MA; Lin YH
    BMC Bioinformatics; 2007 Jul; 8():262. PubMed ID: 17645798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated method for identifying essential proteins from multiplex network model of protein-protein interactions.
    Athira K; Gopakumar G
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050020. PubMed ID: 32795133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.
    Fang Y; Sun M; Dai G; Ramain K
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):76-85. PubMed ID: 26886733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C; Theofilatos K; Pegkas A; Likothanassis S; Mavroudi S
    Artif Intell Med; 2016 Jul; 71():62-9. PubMed ID: 27506132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From communities to protein complexes: A local community detection algorithm on PPI networks.
    Dilmaghani S; Brust MR; Ribeiro CHC; Kieffer E; Danoy G; Bouvry P
    PLoS One; 2022; 17(1):e0260484. PubMed ID: 35085263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.