BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29297989)

  • 1. Increased temperature accelerates glycogen synthesis and delays fatigue in isolated mouse muscle during repeated contractions.
    Hanya E; Katz A
    Acta Physiol (Oxf); 2018 May; 223(1):e13027. PubMed ID: 29297989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of postexercise temperature elevation on postexercise glycogen metabolism of isolated mouse soleus muscle.
    Blackwood SJ; Hanya E; Katz A
    J Appl Physiol (1985); 2019 Apr; 126(4):1103-1109. PubMed ID: 30730817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating after intense repeated contractions inhibits glycogen accumulation in mouse EDL muscle: role of phosphorylase in postexercise glycogen metabolism.
    Blackwood SJ; Hanya E; Katz A
    Am J Physiol Cell Physiol; 2018 Nov; 315(5):C706-C713. PubMed ID: 30156860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle.
    Helander I; Westerblad H; Katz A
    Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1306-12. PubMed ID: 11997245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of N-acetylcysteine on isolated mouse skeletal muscle: contractile properties, temperature dependence, and metabolism.
    Katz A; Hernández A; Caballero DM; Briceno JF; Amezquita LV; Kosterina N; Bruton JD; Westerblad H
    Pflugers Arch; 2014 Mar; 466(3):577-85. PubMed ID: 23912895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions.
    Corona BT; Balog EM; Doyle JA; Rupp JC; Luke RC; Ingalls CP
    Am J Physiol Cell Physiol; 2010 Feb; 298(2):C365-76. PubMed ID: 19940065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue.
    Cairns SP; Renaud JM
    J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Muscle Glycogen Availability on the Capacity for Repeated Exercise in Man.
    Alghannam AF; Jedrzejewski D; Tweddle MG; Gribble H; Bilzon J; Thompson D; Tsintzas K; Betts JA
    Med Sci Sports Exerc; 2016 Jan; 48(1):123-31. PubMed ID: 26197030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitration in control of phosphorylase and glycogenolysis in mouse skeletal muscle.
    Blackwood SJ; Jude B; Mader T; Lanner JT; Katz A
    Am J Physiol Endocrinol Metab; 2021 Apr; 320(4):E691-E701. PubMed ID: 33554777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose.
    Kabbara AA; Nguyen LT; Stephenson GM; Allen DG
    J Muscle Res Cell Motil; 2000; 21(5):481-9. PubMed ID: 11129439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive inotropism in mammalian skeletal muscle in vitro during and after fatigue.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2004 Apr; 82(4):249-61. PubMed ID: 15181463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2(*-) production at 37 degrees C plays a critical role in depressing tetanic force of isolated rat and mouse skeletal muscle.
    Edwards JN; Macdonald WA; van der Poel C; Stephenson DG
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C650-60. PubMed ID: 17459949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early effects of eccentric contractions on muscle glucose uptake.
    Andersen OE; Nielsen OB; Overgaard K
    J Appl Physiol (1985); 2019 Feb; 126(2):376-385. PubMed ID: 30543500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothermia Decreases O2 Cost for Ex Vivo Contraction in Mouse Skeletal Muscle.
    Ferrara PJ; Verkerke ARP; Brault JJ; Funai K
    Med Sci Sports Exerc; 2018 Oct; 50(10):2015-2023. PubMed ID: 29787474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle fatigue in vitro is temperature dependent.
    Segal SS; Faulkner JA; White TP
    J Appl Physiol (1985); 1986 Aug; 61(2):660-5. PubMed ID: 3745058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers.
    Roots H; Ball G; Talbot-Ponsonby J; King M; McBeath K; Ranatunga KW
    J Appl Physiol (1985); 2009 Feb; 106(2):378-84. PubMed ID: 19057001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.