These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29298058)

  • 1. Is Water at the Graphite Interface Vapor-like or Ice-like?
    Qiu Y; Lupi L; Molinero V
    J Phys Chem B; 2018 Apr; 122(13):3626-3634. PubMed ID: 29298058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What Determines the Ice Polymorph in Clouds?
    Hudait A; Molinero V
    J Am Chem Soc; 2016 Jul; 138(28):8958-67. PubMed ID: 27355985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous nucleation of ice on carbon surfaces.
    Lupi L; Hudait A; Molinero V
    J Am Chem Soc; 2014 Feb; 136(8):3156-64. PubMed ID: 24495074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice and water droplets on graphite: a comparison of quantum and classical simulations.
    Ramírez R; Singh JK; Müller-Plathe F; Böhm MC
    J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.
    Lupi L; Kastelowitz N; Molinero V
    J Chem Phys; 2014 Nov; 141(18):18C508. PubMed ID: 25399173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does hydrophilicity of carbon particles improve their ice nucleation ability?
    Lupi L; Molinero V
    J Phys Chem A; 2014 Sep; 118(35):7330-7. PubMed ID: 24533525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy contributions and structural characterization of stacking disordered ices.
    Hudait A; Qiu S; Lupi L; Molinero V
    Phys Chem Chem Phys; 2016 Apr; 18(14):9544-53. PubMed ID: 26983558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of sub-surface freezing in free-standing thin films of a coarse-grained model of water.
    Haji-Akbari A; DeFever RS; Sarupria S; Debenedetti PG
    Phys Chem Chem Phys; 2014 Dec; 16(47):25916-27. PubMed ID: 25354427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of surface freezing in a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3316-3321. PubMed ID: 28292905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy.
    Singla S; Anim-Danso E; Islam AE; Ngo Y; Kim SS; Naik RR; Dhinojwala A
    ACS Nano; 2017 May; 11(5):4899-4906. PubMed ID: 28448717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.
    Hudait A; Molinero V
    J Am Chem Soc; 2014 Jun; 136(22):8081-93. PubMed ID: 24820354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial thermodynamics of water and six other liquid solvents.
    Pascal TA; Goddard WA
    J Phys Chem B; 2014 Jun; 118(22):5943-56. PubMed ID: 24820859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.
    Song B; Molinero V
    J Chem Phys; 2013 Aug; 139(5):054511. PubMed ID: 23927274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields.
    Pascal TA; Schärf D; Jung Y; Kühne TD
    J Chem Phys; 2012 Dec; 137(24):244507. PubMed ID: 23277945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.