These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 29298061)

  • 1. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.
    Sharpe DJ; Levy M; Tozer DJ
    J Chem Theory Comput; 2018 Feb; 14(2):684-692. PubMed ID: 29298061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of the Fermi-Amaldi Term into Direct Energy Kohn-Sham Calculations.
    Dillon DJ; Tozer DJ
    J Chem Theory Comput; 2022 Feb; 18(2):703-709. PubMed ID: 34978791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.
    Zahariev F; Levy M
    J Phys Chem A; 2017 Jan; 121(1):342-347. PubMed ID: 28004931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented potential, energy densities, and virial relations in the weak- and strong-interaction limits of DFT.
    Vuckovic S; Levy M; Gori-Giorgi P
    J Chem Phys; 2017 Dec; 147(21):214107. PubMed ID: 29221411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonempirical scaling correction approach for density functional methods involving substantial amount of Hartree-Fock exchange.
    Zheng X; Zhou T; Yang W
    J Chem Phys; 2013 May; 138(17):174105. PubMed ID: 23656112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orbital relaxation effects on Kohn-Sham frontier orbital energies in density functional theory.
    Zhang D; Zheng X; Li C; Yang W
    J Chem Phys; 2015 Apr; 142(15):154113. PubMed ID: 25903872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-state energy as a simple sum of orbital energies in Kohn-Sham theory: a shift in perspective through a shift in potential.
    Levy M; Zahariev F
    Phys Rev Lett; 2014 Sep; 113(11):113002. PubMed ID: 25259974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the errors of local density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham potential and orbital energies.
    Gritsenko OV; Mentel ŁM; Baerends EJ
    J Chem Phys; 2016 May; 144(20):204114. PubMed ID: 27250286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong correlation in Kohn-Sham density functional theory.
    Malet F; Gori-Giorgi P
    Phys Rev Lett; 2012 Dec; 109(24):246402. PubMed ID: 23368350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connection between Hybrid Functionals and Importance of the Local Density Approximation.
    Mosquera MA; Borca CH; Ratner MA; Schatz GC
    J Phys Chem A; 2016 Mar; 120(9):1605-12. PubMed ID: 26901359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-hybrid density-functional theory with meta-generalized-gradient approximations.
    Souvi SM; Sharkas K; Toulouse J
    J Chem Phys; 2014 Feb; 140(8):084107. PubMed ID: 24588148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.
    Perdew JP; Ruzsinszky A; Constantin LA; Sun J; Csonka GI
    J Chem Theory Comput; 2009 Apr; 5(4):902-8. PubMed ID: 26609599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
    Kananenka AA; Kohut SV; Gaiduk AP; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2013 Aug; 139(7):074112. PubMed ID: 23968077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.
    Thierbach A; Neiss C; Gallandi L; Marom N; Körzdörfer T; Görling A
    J Chem Theory Comput; 2017 Oct; 13(10):4726-4740. PubMed ID: 28783360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple DFT Scheme for Estimating Negative Electron Affinities.
    Vibert CP; Tozer DJ
    J Chem Theory Comput; 2019 Jan; 15(1):241-248. PubMed ID: 30495952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit.
    Zhou Y; Bahmann H; Ernzerhof M
    J Chem Phys; 2015 Sep; 143(12):124103. PubMed ID: 26428992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction energies in non-covalently bound intermolecular complexes derived using the subsystem formulation of density functional theory.
    Dułak M; Wesołowski TA
    J Mol Model; 2007 Jul; 13(6-7):631-42. PubMed ID: 17354013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved electronic excitation energies from shape-corrected semilocal Kohn-Sham potentials.
    Gaiduk AP; Firaha DS; Staroverov VN
    Phys Rev Lett; 2012 Jun; 108(25):253005. PubMed ID: 23004596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals.
    Baerends EJ; Gritsenko OV
    J Chem Phys; 2005 Aug; 123(6):62202. PubMed ID: 16122288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.