These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29298076)

  • 21. Near-ideal strength in gold nanowires achieved through microstructural design.
    Deng C; Sansoz F
    ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deformation mechanisms of Inconel-718 at the nanoscale by molecular dynamics.
    Faiyad A; Munshi MAM; Islam MM; Saha S
    Phys Chem Chem Phys; 2021 May; 23(17):10650-10661. PubMed ID: 33904543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Energy Driven Liquid-Drop-Like Pseudoelastic Behaviors and In Situ Atomistic Mechanisms of Small-Sized Face-Centered-Cubic Metals.
    Kong D; Xin T; Sun S; Lu Y; Shu X; Long H; Chen Y; Teng J; Zhang Z; Wang L; Han X
    Nano Lett; 2019 Jan; 19(1):292-298. PubMed ID: 30543297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between Σ3 Boundaries, Dislocation Slip, and Plasticity in Pure Nickel.
    Lin Y; Han L; Wang G
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale density functional theory investigation of failure modes in ZnO nanowires.
    Agrawal R; Paci JT; Espinosa HD
    Nano Lett; 2010 Sep; 10(9):3432-8. PubMed ID: 20726573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of twin orientation and spacing on the mechanical properties of Cu nanowires.
    Yang Z; Zheng L; Yue Y; Lu Z
    Sci Rep; 2017 Aug; 7(1):10056. PubMed ID: 28855661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins.
    Wang J; Sansoz F; Huang J; Liu Y; Sun S; Zhang Z; Mao SX
    Nat Commun; 2013; 4():1742. PubMed ID: 23612283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Nov; 4():6981. PubMed ID: 25382029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation.
    Kardani A; Montazeri A
    Sci Rep; 2020 Jun; 10(1):9745. PubMed ID: 32546743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plastic deformation and strengthening mechanism of FCC/HCP nano-laminated dual-phase CoCrFeMnNi high entropy alloy.
    Huang C; Yao Y; Peng X; Chen S
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34555821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain Rate Dependent Shear Plasticity in Graphite Oxide.
    Vinod S; Tiwary CS; Machado LD; Ozden S; Cho J; Shaw P; Vajtai R; Galvão DS; Ajayan PM
    Nano Lett; 2016 Feb; 16(2):1127-31. PubMed ID: 26741282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.
    Yan S; H Qin Q; Zhong Z
    Nanotechnology; 2020 Sep; 31(38):385705. PubMed ID: 32503016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals.
    Mianroodi JR; Svendsen B
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Room-temperature superplasticity in Au nanowires and their atomistic mechanisms.
    Liu P; Wang L; Yue Y; Song S; Wang X; Reddy KM; Liao X; Zhang Z; Chen M; Han X
    Nanoscale; 2019 May; 11(18):8727-8735. PubMed ID: 31033993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2018 Sep; 24(10):277. PubMed ID: 30196452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.
    Violay M; Heap MJ; Acosta M; Madonna C
    Sci Rep; 2017 Aug; 7(1):7705. PubMed ID: 28794474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires.
    Koh SJ; Lee HP
    Nanotechnology; 2006 Jul; 17(14):3451-67. PubMed ID: 19661590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.