These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes. Chang S; Naiman K; Thrall ES; Kath JE; Jergic S; Dixon NE; Fuchs RP; Loparo JJ Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25591-25601. PubMed ID: 31796591 [TBL] [Abstract][Full Text] [Related]
5. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. Thakur RS; Basavaraju S; Khanduja JS; Muniyappa K; Nagaraju G J Biol Chem; 2015 Oct; 290(40):24119-39. PubMed ID: 26276393 [TBL] [Abstract][Full Text] [Related]
6. Repair and tolerance of DNA damage at the replication fork: A structural perspective. Eichman BF Curr Opin Struct Biol; 2023 Aug; 81():102618. PubMed ID: 37269798 [TBL] [Abstract][Full Text] [Related]
7. Making Choices: DNA Replication Fork Recovery Mechanisms. Kondratick CM; Washington MT; Spies M Semin Cell Dev Biol; 2021 May; 113():27-37. PubMed ID: 33967572 [TBL] [Abstract][Full Text] [Related]
8. Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. Gupta S; Yeeles JT; Marians KJ J Biol Chem; 2014 Oct; 289(41):28376-87. PubMed ID: 25138216 [TBL] [Abstract][Full Text] [Related]
9. Replisome structure suggests mechanism for continuous fork progression and post-replication repair. Yang W; Seidman MM; Rupp WD; Gao Y DNA Repair (Amst); 2019 Sep; 81():102658. PubMed ID: 31303546 [TBL] [Abstract][Full Text] [Related]
11. Direct restart of a replication fork stalled by a head-on RNA polymerase. Pomerantz RT; O'Donnell M Science; 2010 Jan; 327(5965):590-2. PubMed ID: 20110508 [TBL] [Abstract][Full Text] [Related]
12. Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast. Gangavarapu V; Santa Maria SR; Prakash S; Prakash L mBio; 2011; 2(3):e00079-11. PubMed ID: 21586645 [TBL] [Abstract][Full Text] [Related]
13. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance. Fuchs RP DNA Repair (Amst); 2016 Aug; 44():51-58. PubMed ID: 27321147 [TBL] [Abstract][Full Text] [Related]
15. Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Gupta MK; Guy CP; Yeeles JT; Atkinson J; Bell H; Lloyd RG; Marians KJ; McGlynn P Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7252-7. PubMed ID: 23589869 [TBL] [Abstract][Full Text] [Related]
16. Replication forks blocked by protein-DNA complexes have limited stability in vitro. McGlynn P; Guy CP J Mol Biol; 2008 Aug; 381(2):249-55. PubMed ID: 18602646 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of dealing with DNA damage-induced replication problems. Budzowska M; Kanaar R Cell Biochem Biophys; 2009; 53(1):17-31. PubMed ID: 19034694 [TBL] [Abstract][Full Text] [Related]
18. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Mourón S; Rodriguez-Acebes S; Martínez-Jiménez MI; García-Gómez S; Chocrón S; Blanco L; Méndez J Nat Struct Mol Biol; 2013 Dec; 20(12):1383-9. PubMed ID: 24240614 [TBL] [Abstract][Full Text] [Related]
19. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. McGlynn P; Lloyd RG; Marians KJ Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8235-40. PubMed ID: 11459958 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of leading-strand lesion skipping by the replisome. Yeeles JT; Marians KJ Mol Cell; 2013 Dec; 52(6):855-65. PubMed ID: 24268579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]