These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 29298138)
41. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Gafar NA; Eyre BD; Schulz KG Sci Rep; 2019 Feb; 9(1):2486. PubMed ID: 30792404 [TBL] [Abstract][Full Text] [Related]
42. Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Flynn KJ; Clark DR; Mitra A; Fabian H; Hansen PJ; Glibert PM; Wheeler GL; Stoecker DK; Blackford JC; Brownlee C Proc Biol Sci; 2015 Apr; 282(1804):20142604. PubMed ID: 25716793 [TBL] [Abstract][Full Text] [Related]
43. The Impact of Submesoscale Physics on Primary Productivity of Plankton. Mahadevan A Ann Rev Mar Sci; 2016; 8():161-84. PubMed ID: 26394203 [TBL] [Abstract][Full Text] [Related]
45. Southern Ocean phytoplankton physiology in a changing climate. Petrou K; Kranz SA; Trimborn S; Hassler CS; Ameijeiras SB; Sackett O; Ralph PJ; Davidson AT J Plant Physiol; 2016 Sep; 203():135-150. PubMed ID: 27236210 [TBL] [Abstract][Full Text] [Related]
46. Climate-driven trends in contemporary ocean productivity. Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666 [TBL] [Abstract][Full Text] [Related]
47. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. Smith HE; Tyrrell T; Charalampopoulou A; Dumousseaud C; Legge OJ; Birchenough S; Pettit LR; Garley R; Hartman SE; Hartman MC; Sagoo N; Daniels CJ; Achterberg EP; Hydes DJ Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8845-9. PubMed ID: 22615387 [TBL] [Abstract][Full Text] [Related]
48. The effects of iron fertilization on carbon sequestration in the Southern Ocean. Buesseler KO; Andrews JE; Pike SM; Charette MA Science; 2004 Apr; 304(5669):414-7. PubMed ID: 15087543 [TBL] [Abstract][Full Text] [Related]
49. Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores. Irie T; Bessho K; Findlay HS; Calosi P PLoS One; 2010 Oct; 5(10):e13436. PubMed ID: 20976167 [TBL] [Abstract][Full Text] [Related]
50. Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations. Jin P; Gao K Mar Pollut Bull; 2016 Feb; 103(1-2):101-108. PubMed ID: 26746379 [TBL] [Abstract][Full Text] [Related]
51. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Comeau S; Cornwall CE; DeCarlo TM; Krieger E; McCulloch MT Glob Chang Biol; 2018 Oct; 24(10):4857-4868. PubMed ID: 29957854 [TBL] [Abstract][Full Text] [Related]
52. Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory. Ksionzek KB; Lechtenfeld OJ; McCallister SL; Schmitt-Kopplin P; Geuer JK; Geibert W; Koch BP Science; 2016 Oct; 354(6311):456-459. PubMed ID: 27789839 [TBL] [Abstract][Full Text] [Related]
53. Biogeochemistry of carbonates: recorders of past oceans and climate. Rickaby RE; Schrag DP Met Ions Biol Syst; 2005; 44():241-68. PubMed ID: 15971670 [TBL] [Abstract][Full Text] [Related]
54. The requirement for calcification differs between ecologically important coccolithophore species. Walker CE; Taylor AR; Langer G; Durak GM; Heath S; Probert I; Tyrrell T; Brownlee C; Wheeler GL New Phytol; 2018 Oct; 220(1):147-162. PubMed ID: 29916209 [TBL] [Abstract][Full Text] [Related]
55. Active and passive optical remote sensing of the aquatic environment: introduction to the feature issue. Lee Z; Churnside J; Mao Z; Wu S; Zibordi G Appl Opt; 2020 Apr; 59(10):APS1-APS2. PubMed ID: 32400570 [TBL] [Abstract][Full Text] [Related]
56. Effect of ocean acidification on iron availability to marine phytoplankton. Shi D; Xu Y; Hopkinson BM; Morel FM Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213 [TBL] [Abstract][Full Text] [Related]
57. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean. Sunda WG Front Microbiol; 2012; 3():204. PubMed ID: 22701115 [TBL] [Abstract][Full Text] [Related]
58. The integral role of iron in ocean biogeochemistry. Tagliabue A; Bowie AR; Boyd PW; Buck KN; Johnson KS; Saito MA Nature; 2017 Mar; 543(7643):51-59. PubMed ID: 28252066 [TBL] [Abstract][Full Text] [Related]
59. Vertical Distributions of Coccolithophores, PIC, POC, Biogenic Silica, and Chlorophyll Balch WM; Bowler BC; Drapeau DT; Lubelczyk LC; Lyczkowski E Global Biogeochem Cycles; 2018 Jan; 32(1):2-17. PubMed ID: 29576683 [TBL] [Abstract][Full Text] [Related]
60. Global iron connections between desert dust, ocean biogeochemistry, and climate. Jickells TD; An ZS; Andersen KK; Baker AR; Bergametti G; Brooks N; Cao JJ; Boyd PW; Duce RA; Hunter KA; Kawahata H; Kubilay N; laRoche J; Liss PS; Mahowald N; Prospero JM; Ridgwell AJ; Tegen I; Torres R Science; 2005 Apr; 308(5718):67-71. PubMed ID: 15802595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]