These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Contribution of fish to the marine inorganic carbon cycle. Wilson RW; Millero FJ; Taylor JR; Walsh PJ; Christensen V; Jennings S; Grosell M Science; 2009 Jan; 323(5912):359-62. PubMed ID: 19150840 [TBL] [Abstract][Full Text] [Related]
64. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification. Mos B; Byrne M; Dworjanyn SA Mar Environ Res; 2016 Feb; 113():39-48. PubMed ID: 26595392 [TBL] [Abstract][Full Text] [Related]
65. High abundance of protein-like fluorescence in the Amerasian Basin of Arctic Ocean: Potential implication of a fall phytoplankton bloom. Chen M; Nam SI; Kim JH; Kwon YJ; Hong S; Jung J; Shin KH; Hur J Sci Total Environ; 2017 Dec; 599-600():355-363. PubMed ID: 28478365 [TBL] [Abstract][Full Text] [Related]
66. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Ardyna M; Lacour L; Sergi S; d'Ovidio F; Sallée JB; Rembauville M; Blain S; Tagliabue A; Schlitzer R; Jeandel C; Arrigo KR; Claustre H Nat Commun; 2019 Jun; 10(1):2451. PubMed ID: 31165724 [TBL] [Abstract][Full Text] [Related]
67. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. Müller MN; Trull TW; Hallegraeff GM ISME J; 2017 Aug; 11(8):1777-1787. PubMed ID: 28430186 [TBL] [Abstract][Full Text] [Related]
68. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Blain S; Quéguiner B; Armand L; Belviso S; Bombled B; Bopp L; Bowie A; Brunet C; Brussaard C; Carlotti F; Christaki U; Corbière A; Durand I; Ebersbach F; Fuda JL; Garcia N; Gerringa L; Griffiths B; Guigue C; Guillerm C; Jacquet S; Jeandel C; Laan P; Lefèvre D; Lo Monaco C; Malits A; Mosseri J; Obernosterer I; Park YH; Picheral M; Pondaven P; Remenyi T; Sandroni V; Sarthou G; Savoye N; Scouarnec L; Souhaut M; Thuiller D; Timmermans K; Trull T; Uitz J; van Beek P; Veldhuis M; Vincent D; Viollier E; Vong L; Wagener T Nature; 2007 Apr; 446(7139):1070-4. PubMed ID: 17460670 [TBL] [Abstract][Full Text] [Related]
69. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Reinfelder JR Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207 [TBL] [Abstract][Full Text] [Related]
70. First autonomous bio-optical profiling float in the Gulf of Mexico reveals dynamic biogeochemistry in deep waters. Green RE; Bower AS; Lugo-Fernández A PLoS One; 2014; 9(7):e101658. PubMed ID: 24992646 [TBL] [Abstract][Full Text] [Related]
71. Coccolithophore biomineralization: New questions, new answers. Brownlee C; Wheeler GL; Taylor AR Semin Cell Dev Biol; 2015 Oct; 46():11-6. PubMed ID: 26498037 [TBL] [Abstract][Full Text] [Related]
72. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats. Terrats L; Claustre H; Cornec M; Mangin A; Neukermans G Geophys Res Lett; 2020 Dec; 47(23):e2020GL090559. PubMed ID: 33380764 [TBL] [Abstract][Full Text] [Related]
73. Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica. Triccas A; Laidlaw F; Singleton MR; Nudelman F J Struct Biol; 2024 Mar; 216(1):108066. PubMed ID: 38350555 [TBL] [Abstract][Full Text] [Related]
74. Iron stress threatens Southern Ocean phytoplankton. Cornwall W Science; 2023 Feb; 379(6634):741-742. PubMed ID: 36821674 [TBL] [Abstract][Full Text] [Related]
75. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom. Lehahn Y; Koren I; Schatz D; Frada M; Sheyn U; Boss E; Efrati S; Rudich Y; Trainic M; Sharoni S; Laber C; DiTullio GR; Coolen MJ; Martins AM; Van Mooy BA; Bidle KD; Vardi A Curr Biol; 2014 Sep; 24(17):2041-6. PubMed ID: 25155511 [TBL] [Abstract][Full Text] [Related]
76. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Alexander H; Rouco M; Haley ST; Wilson ST; Karl DM; Dyhrman ST Proc Natl Acad Sci U S A; 2015 Nov; 112(44):E5972-9. PubMed ID: 26460011 [TBL] [Abstract][Full Text] [Related]
77. Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification. Hattich GS; Listmann L; Raab J; Ozod-Seradj D; Reusch TB; Matthiessen B Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28148833 [TBL] [Abstract][Full Text] [Related]
78. Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high-CO2 geological past. Moolna A; Rickaby RE Geobiology; 2012 Jan; 10(1):72-81. PubMed ID: 22118223 [TBL] [Abstract][Full Text] [Related]
79. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean. Anderson SI; Fronda C; Barton AD; Clayton S; Rynearson TA; Dutkiewicz S Glob Chang Biol; 2024 Jan; 30(1):e17093. PubMed ID: 38273480 [TBL] [Abstract][Full Text] [Related]
80. Complex seasonal patterns of primary producers at the land-sea interface. Cloern JE; Jassby AD Ecol Lett; 2008 Dec; 11(12):1294-303. PubMed ID: 18793308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]