These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29298414)

  • 1. Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington's Disease.
    Virlogeux A; Moutaux E; Christaller W; Genoux A; Bruyère J; Fino E; Charlot B; Cazorla M; Saudou F
    Cell Rep; 2018 Jan; 22(1):110-122. PubMed ID: 29298414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease.
    Zhao X; Chen XQ; Han E; Hu Y; Paik P; Ding Z; Overman J; Lau AL; Shahmoradian SH; Chiu W; Thompson LM; Wu C; Mobley WC
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):E5655-64. PubMed ID: 27601642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pridopidine rescues BDNF/TrkB trafficking dynamics and synapse homeostasis in a Huntington disease brain-on-a-chip model.
    Lenoir S; Lahaye RA; Vitet H; Scaramuzzino C; Virlogeux A; Capellano L; Genoux A; Gershoni-Emek N; Geva M; Hayden MR; Saudou F
    Neurobiol Dis; 2022 Oct; 173():105857. PubMed ID: 36075537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.
    Buren C; Parsons MP; Smith-Dijak A; Raymond LA
    Neurobiol Dis; 2016 Mar; 87():80-90. PubMed ID: 26711622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct assessment of presynaptic modulation of cortico-striatal glutamate release in a Huntington's disease mouse model.
    Koch ET; Woodard CL; Raymond LA
    J Neurophysiol; 2018 Dec; 120(6):3077-3084. PubMed ID: 30332323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice.
    Deng YP; Wong T; Bricker-Anthony C; Deng B; Reiner A
    Neurobiol Dis; 2013 Dec; 60():89-107. PubMed ID: 23969239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic Huntington Alters BMP Signaling and Synaptic Growth through Local Disruptions of Endosomal Compartments.
    Akbergenova Y; Littleton JT
    J Neurosci; 2017 Mar; 37(12):3425-3439. PubMed ID: 28235896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice.
    Rothe T; Deliano M; Wójtowicz AM; Dvorzhak A; Harnack D; Paul S; Vagner T; Melnick I; Stark H; Grantyn R
    Neuroscience; 2015 Dec; 311():519-38. PubMed ID: 26546830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease.
    Ferrante A; Martire A; Pepponi R; Varani K; Vincenzi F; Ferraro L; Beggiato S; Tebano MT; Popoli P
    Neurobiol Dis; 2014 Nov; 71():193-204. PubMed ID: 25132555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease.
    Ma Q; Yang J; Li T; Milner TA; Hempstead BL
    Neurobiol Dis; 2015 Oct; 82():466-477. PubMed ID: 26282324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic dysfunction in Huntington's disease.
    Rozas JL; Gómez-Sánchez L; Tomás-Zapico C; Lucas JJ; Fernández-Chacón R
    Biochem Soc Trans; 2010 Apr; 38(2):488-92. PubMed ID: 20298208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Huntington's disease: cellular and molecular basis of pathology].
    Korzhova VV; Artamonov DN; Vlasova OL; Bezprozvannyĭ IB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(4):359-75. PubMed ID: 25723022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease.
    Plotkin JL; Day M; Peterson JD; Xie Z; Kress GJ; Rafalovich I; Kondapalli J; Gertler TS; Flajolet M; Greengard P; Stavarache M; Kaplitt MG; Rosinski J; Chan CS; Surmeier DJ
    Neuron; 2014 Jul; 83(1):178-88. PubMed ID: 24991961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease.
    Puigdellívol M; Cherubini M; Brito V; Giralt A; Suelves N; Ballesteros J; Zamora-Moratalla A; Martín ED; Eipper BA; Alberch J; Ginés S
    Hum Mol Genet; 2015 Dec; 24(25):7265-85. PubMed ID: 26464483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease.
    Petrasch-Parwez E; Nguyen HP; Löbbecke-Schumacher M; Habbes HW; Wieczorek S; Riess O; Andres KH; Dermietzel R; Von Hörsten S
    J Comp Neurol; 2007 Apr; 501(5):716-30. PubMed ID: 17299753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice.
    Milnerwood AJ; Kaufman AM; Sepers MD; Gladding CM; Zhang L; Wang L; Fan J; Coquinco A; Qiao JY; Lee H; Wang YT; Cynader M; Raymond LA
    Neurobiol Dis; 2012 Oct; 48(1):40-51. PubMed ID: 22668780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease.
    Rocher AB; Gubellini P; Merienne N; Boussicault L; Petit F; Gipchtein P; Jan C; Hantraye P; Brouillet E; Bonvento G
    Neurobiol Dis; 2016 Feb; 86():131-9. PubMed ID: 26626081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticostriatal synaptic adaptations in Huntington's disease.
    Plotkin JL; Surmeier DJ
    Curr Opin Neurobiol; 2015 Aug; 33():53-62. PubMed ID: 25700146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington's disease versus wild-type mice.
    Martire A; Calamandrei G; Felici F; Scattoni ML; Lastoria G; Domenici MR; Tebano MT; Popoli P
    Neurosci Lett; 2007 Apr; 417(1):78-83. PubMed ID: 17331645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease.
    Sepers MD; Raymond LA
    Drug Discov Today; 2014 Jul; 19(7):990-6. PubMed ID: 24603212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.