BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29298478)

  • 1. Influence of Intermolecular Coupling on the Vibrational Spectrum of Water.
    Matt SM; Ben-Amotz D
    J Phys Chem B; 2018 May; 122(21):5375-5380. PubMed ID: 29298478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OH-Stretch Raman Multivariate Curve Resolution Spectroscopy of HOD/H
    Kananenka AA; Hestand NJ; Skinner JL
    J Phys Chem B; 2019 Jun; 123(24):5139-5146. PubMed ID: 31117608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How ions affect the structure of water: a combined Raman spectroscopy and multivariate curve resolution study.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA; Sarkar SK
    J Phys Chem B; 2013 Dec; 117(51):16479-85. PubMed ID: 24298945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbations of water by alkali halide ions measured using multivariate Raman curve resolution.
    Perera PN; Browder B; Ben-Amotz D
    J Phys Chem B; 2009 Feb; 113(7):1805-9. PubMed ID: 19199691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy.
    Ahmed M; Singh AK; Mondal JA
    Phys Chem Chem Phys; 2016 Jan; 18(4):2767-75. PubMed ID: 26725484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is Unified Understanding of Vibrational Coupling of Water Possible? Hyper-Raman Measurement and Machine Learning Spectra.
    Inoue K; Litman Y; Wilkins DM; Nagata Y; Okuno M
    J Phys Chem Lett; 2023 Mar; 14(12):3063-3068. PubMed ID: 36947156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water.
    Ito H; Tanimura Y
    J Chem Phys; 2016 Feb; 144(7):074201. PubMed ID: 26896979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.
    Ahmed M; Singh AK; Mondal JA; Sarkar SK
    J Phys Chem B; 2013 Aug; 117(33):9728-33. PubMed ID: 23895453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding water structure from Raman spectra of isotopic substitution H
    Hu Q; Zhao H; Ouyang S
    Phys Chem Chem Phys; 2017 Aug; 19(32):21540-21547. PubMed ID: 28766602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared and Raman line shapes for ice Ih. I. Dilute HOD in H(2)O and D(2)O.
    Li F; Skinner JL
    J Chem Phys; 2010 May; 132(20):204505. PubMed ID: 20515098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR and Raman spectra of liquid water: theory and interpretation.
    Auer BM; Skinner JL
    J Chem Phys; 2008 Jun; 128(22):224511. PubMed ID: 18554033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-x-ray scattering.
    Harada Y; Tokushima T; Horikawa Y; Takahashi O; Niwa H; Kobayashi M; Oshima M; Senba Y; Ohashi H; Wikfeldt KT; Nilsson A; Pettersson LG; Shin S
    Phys Rev Lett; 2013 Nov; 111(19):193001. PubMed ID: 24266469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA
    J Chem Phys; 2014 Oct; 141(16):164708. PubMed ID: 25362333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling Coupling Effects in the Infrared Spectra of Liquid Water.
    Hunter KM; Shakib FA; Paesani F
    J Phys Chem B; 2018 Nov; 122(47):10754-10761. PubMed ID: 30403350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both Inter- and Intramolecular Coupling of O-H Groups Determine the Vibrational Response of the Water/Air Interface.
    Schaefer J; Backus EH; Nagata Y; Bonn M
    J Phys Chem Lett; 2016 Nov; 7(22):4591-4595. PubMed ID: 27797213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 degrees C.
    Corcelli SA; Skinner JL
    J Phys Chem A; 2005 Jul; 109(28):6154-65. PubMed ID: 16833955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting the Raman OH/OD stretch band of ice from isotopic substitution and phase transition effects.
    Hu Q; Zhao H; Ouyang S
    Phys Chem Chem Phys; 2018 Nov; 20(45):28600-28605. PubMed ID: 30406247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water.
    Ishiyama T
    J Chem Phys; 2021 May; 154(20):204502. PubMed ID: 34241149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water.
    Torii H
    J Phys Chem A; 2006 Aug; 110(30):9469-77. PubMed ID: 16869698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.