These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29298484)

  • 1. Looking Down Under for a Circular Economy of Indium.
    Werner TT; Ciacci L; Mudd GM; Reck BK; Northey SA
    Environ Sci Technol; 2018 Feb; 52(4):2055-2062. PubMed ID: 29298484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.
    Løvik AN; Restrepo E; Müller DB
    Environ Sci Technol; 2016 Aug; 50(16):8453-61. PubMed ID: 27400378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.
    Chancerel P; Rotter VS; Ueberschaar M; Marwede M; Nissen NF; Lang KD
    Waste Manag Res; 2013 Oct; 31(10 Suppl):3-16. PubMed ID: 24068305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review.
    Zheng K; Benedetti MF; van Hullebusch ED
    J Environ Manage; 2023 Dec; 347():119043. PubMed ID: 37776794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of indium from CIGS photovoltaic cells: potential of combining acid-resistant nanofiltration with liquid-liquid extraction.
    Zimmermann YS; Niewersch C; Lenz M; Kül ZZ; Corvini PF; Schäffer A; Wintgens T
    Environ Sci Technol; 2014 Nov; 48(22):13412-8. PubMed ID: 25310266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting the temporal stock generation and recycling potential of metals towards a sustainable future: The case of gallium in China.
    Eheliyagoda D; Zeng X; Wang Z; Albalghiti E; Li J
    Sci Total Environ; 2019 Nov; 689():332-340. PubMed ID: 31277001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lost by Design.
    Ciacci L; Reck BK; Nassar NT; Graedel TE
    Environ Sci Technol; 2015 Aug; 49(16):9443-51. PubMed ID: 25690919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.
    Nansai K; Nakajima K; Kagawa S; Kondo Y; Shigetomi Y; Suh S
    Environ Sci Technol; 2015 Feb; 49(4):2022-31. PubMed ID: 25622132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid input-output approach to metal production and its application to the introduction of lead-free solders.
    Nakamura S; Murakami S; Nakajima K; Nagasaka T
    Environ Sci Technol; 2008 May; 42(10):3843-8. PubMed ID: 18546732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Securing Indium Utilization for High-Tech and Renewable Energy Industries.
    Gómez M; Xu G; Li J; Zeng X
    Environ Sci Technol; 2023 Feb; 57(6):2611-2624. PubMed ID: 36735866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals.
    Fang S; Tao T; Cao H; He M; Zeng X; Ning P; Zhao H; Wu M; Zhang Y; Sun Z
    Waste Manag; 2019 Apr; 89():212-223. PubMed ID: 31079734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive dataset for Australian mine production 1799 to 2021.
    Mudd GM
    Sci Data; 2023 Jun; 10(1):391. PubMed ID: 37339978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resource Demand Scenarios for the Major Metals.
    Elshkaki A; Graedel TE; Ciacci L; Reck BK
    Environ Sci Technol; 2018 Mar; 52(5):2491-2497. PubMed ID: 29380602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The future of copper in China--A perspective based on analysis of copper flows and stocks.
    Zhang L; Cai Z; Yang J; Yuan Z; Chen Y
    Sci Total Environ; 2015 Dec; 536():142-149. PubMed ID: 26204050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials.
    Gustafsson AM; Björefors F; Steenari BM; Ekberg C
    ScientificWorldJournal; 2015; 2015():494015. PubMed ID: 26347901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.
    Løvik AN; Restrepo E; Müller DB
    Environ Sci Technol; 2015 May; 49(9):5704-12. PubMed ID: 25884251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endangered elements, critical raw materials and conflict minerals.
    Rhodes CJ
    Sci Prog; 2019 Dec; 102(4):304-350. PubMed ID: 31818204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Evolution of Urban Mining Resources in Hong Kong, Up to the Year 2050.
    Kuong IH; Li J; Zhang J; Zeng X
    Environ Sci Technol; 2019 Feb; 53(3):1394-1403. PubMed ID: 30609892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.