BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29298675)

  • 1. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum.
    Mizuno H; Kasuga S; Kawahigashi H
    BMC Plant Biol; 2018 Jan; 18(1):2. PubMed ID: 29298675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
    Bihmidine S; Julius BT; Dweikat I; Braun DM
    Plant Signal Behav; 2016; 11(1):e1117721. PubMed ID: 26619184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.
    Sui N; Yang Z; Liu M; Wang B
    BMC Genomics; 2015 Jul; 16(1):534. PubMed ID: 26186930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem sugar accumulation in sweet sorghum - activity and expression of sucrose metabolizing enzymes and sucrose transporters.
    Qazi HA; Paranjpe S; Bhargava S
    J Plant Physiol; 2012 Apr; 169(6):605-13. PubMed ID: 22325624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.
    Ghate T; Deshpande S; Bhargava S
    Plant Biol (Stuttg); 2017 May; 19(3):396-405. PubMed ID: 28032438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Functional analysis on sucrose transporters in sweet potato].
    Liu Y; Wu Z; Wu W; Yang C; Chen C; Zhang K
    Sheng Wu Gong Cheng Xue Bao; 2023 Jul; 39(7):2772-2793. PubMed ID: 37584131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling.
    Mizuno H; Kasuga S; Kawahigashi H
    Biotechnol Biofuels; 2016; 9():127. PubMed ID: 27330561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench).
    Jain M; Prasad PV; Boote KJ; Hartwell AL; Chourey PS
    Planta; 2007 Dec; 227(1):67-79. PubMed ID: 17680267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Relationship between cellulose synthesis metabolism and lodging resistance in intercropping soybean at seedling stage].
    Deng YC; Liu WG; Yuan XQ; Yuan J; Zou JL; Du JB; Yang WY
    Ying Yong Sheng Tai Xue Bao; 2016 Feb; 27(2):469-76. PubMed ID: 27396119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconversion of free sugars in relation to activities of enzymes catalyzing synthesis and cleavage of sucrose in growing stem tissues of sorghum.
    Bhatia S; Singh R
    Indian J Exp Biol; 2001 Oct; 39(10):1035-40. PubMed ID: 11883512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of sucrose transporters to phloem unloading within Sorghum bicolor stem internodes.
    Milne RJ; Reinders A; Ward JM; Offler CE; Patrick JW; Grof CPL
    Plant Signal Behav; 2017 May; 12(5):e1319030. PubMed ID: 28426383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum.
    Babst BA; Karve A; Sementilli A; Dweikat I; Braun DM
    Planta; 2021 Sep; 254(4):80. PubMed ID: 34546416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling.
    Yang J; Zhang J; Wang Z; Zhu Q; Liu L
    Planta; 2004 Dec; 220(2):331-43. PubMed ID: 15290295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling.
    Yang J; Zhang J; Wang Z; Zhu Q
    J Exp Bot; 2001 Nov; 52(364):2169-79. PubMed ID: 11604456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems.
    Fujimoto M; Sazuka T; Oda Y; Kawahigashi H; Wu J; Takanashi H; Ohnishi T; Yoneda JI; Ishimori M; Kajiya-Kanegae H; Hibara KI; Ishizuna F; Ebine K; Ueda T; Tokunaga T; Iwata H; Matsumoto T; Kasuga S; Yonemaru JI; Tsutsumi N
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8783-E8792. PubMed ID: 30150370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.