BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29298914)

  • 21. [The Influence of A/G Composition of 3' Stop Codon Contexts on Translation Termination Efficiency in Eukaryotes].
    Sokolova EE; Vlasov PK; Egorova TV; Shuvalov AV; Alkalaeva EZ
    Mol Biol (Mosk); 2020; 54(5):837-848. PubMed ID: 33009793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Termination of protein synthesis.
    Tuite MF; Stansfield I
    Mol Biol Rep; 1994 May; 19(3):171-81. PubMed ID: 7969105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination.
    Fan-Minogue H; Du M; Pisarev AV; Kallmeyer AK; Salas-Marco J; Keeling KM; Thompson SR; Pestova TV; Bedwell DM
    Mol Cell; 2008 Jun; 30(5):599-609. PubMed ID: 18538658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition.
    Bertram G; Bell HA; Ritchie DW; Fullerton G; Stansfield I
    RNA; 2000 Sep; 6(9):1236-47. PubMed ID: 10999601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular recognition and catalysis in translation termination complexes.
    Klaholz BP
    Trends Biochem Sci; 2011 May; 36(5):282-92. PubMed ID: 21420300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stop codon recognition in the early-diverged protozoans Giardia lamblia and Trichomonas vaginalis.
    Chai B; Li C; Yu J; Hao Y; Guo P; Shen Q
    Mol Biochem Parasitol; 2015 Jul; 202(1):15-21. PubMed ID: 26310515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three, four or more: the translational stop signal at length.
    Tate WP; Mannering SA
    Mol Microbiol; 1996 Jul; 21(2):213-9. PubMed ID: 8858577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of stop codon recognition by release factor 1.
    Hetrick B; Lee K; Joseph S
    Biochemistry; 2009 Dec; 48(47):11178-84. PubMed ID: 19874047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stop codons and UGG promote efficient binding of the polypeptide release factor eRF1 to the ribosomal A site.
    Chavatte L; Frolova L; Laugâa P; Kisselev L; Favre A
    J Mol Biol; 2003 Aug; 331(4):745-58. PubMed ID: 12909007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli.
    Mora L; Zavialov A; Ehrenberg M; Buckingham RH
    Mol Microbiol; 2003 Dec; 50(5):1467-76. PubMed ID: 14651631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity.
    Eliseev B; Kryuchkova P; Alkalaeva E; Frolova L
    Nucleic Acids Res; 2011 Jan; 39(2):599-608. PubMed ID: 20860996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GGQ methylation enhances both speed and accuracy of stop codon recognition by bacterial class-I release factors.
    Pundir S; Ge X; Sanyal S
    J Biol Chem; 2021; 296():100681. PubMed ID: 33887323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity.
    Sato H; Ito K; Nakamura Y
    Mol Microbiol; 2006 Apr; 60(1):108-20. PubMed ID: 16556224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of release factor context at UAA codons in Escherichia coli.
    Martin R; Weiner M; Gallant J
    J Bacteriol; 1988 Oct; 170(10):4714-7. PubMed ID: 3049546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.
    Mora L; Heurgué-Hamard V; de Zamaroczy M; Kervestin S; Buckingham RH
    J Biol Chem; 2007 Dec; 282(49):35638-45. PubMed ID: 17932046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRF1s.
    Chavatte L; Kervestin S; Favre A; Jean-Jean O
    EMBO J; 2003 Apr; 22(7):1644-53. PubMed ID: 12660170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast.
    Merritt GH; Naemi WR; Mugnier P; Webb HM; Tuite MF; von der Haar T
    Nucleic Acids Res; 2010 Sep; 38(16):5479-92. PubMed ID: 20444877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The polypeptide chain release factor eRF1 specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes.
    Chavatte L; Frolova L; Kisselev L; Favre A
    Eur J Biochem; 2001 May; 268(10):2896-904. PubMed ID: 11358506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition of 3' nucleotide context and stop codon readthrough are determined during mRNA translation elongation.
    Biziaev N; Sokolova E; Yanvarev DV; Toropygin IY; Shuvalov A; Egorova T; Alkalaeva E
    J Biol Chem; 2022 Jul; 298(7):102133. PubMed ID: 35700825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eukaryotic translational termination efficiency is influenced by the 3' nucleotides within the ribosomal mRNA channel.
    Cridge AG; Crowe-McAuliffe C; Mathew SF; Tate WP
    Nucleic Acids Res; 2018 Feb; 46(4):1927-1944. PubMed ID: 29325104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.