These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29299325)

  • 41. Organization of the vomeronasal organ in a plethodontid salamander.
    Dawley EM; Bass AH
    J Morphol; 1988 Nov; 198(2):243-255. PubMed ID: 29890795
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Model systems for regeneration: salamanders.
    Joven A; Elewa A; Simon A
    Development; 2019 Jul; 146(14):. PubMed ID: 31332037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The morphology and post-hatching development of the skull of Bolitoglossa nicefori (Caudata: Plethodontidae): developmental implications of recapitulation and repatterning.
    Dulcey Cala CJ; Tarazona OA; Ramírez-Pinilla MP
    Zoology (Jena); 2009; 112(3):227-39. PubMed ID: 19303748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders.
    Chippindale PT; Bonett RM; Baldwin AS; Wiens JJ
    Evolution; 2004 Dec; 58(12):2809-22. PubMed ID: 15696758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Salamanders as Key Models for Development and Regeneration Research.
    Maden M
    Methods Mol Biol; 2023; 2562():1-23. PubMed ID: 36272065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Embryonic staging table for a direct-developing salamander, Plethodon cinereus (Plethodontidae).
    Kerney R
    Anat Rec (Hoboken); 2011 Nov; 294(11):1796-808. PubMed ID: 21965144
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis.
    Mitogawa K; Hirata A; Moriyasu M; Makanae A; Miura S; Endo T; Satoh A
    Regeneration (Oxf); 2014 Apr; 1(2):26-36. PubMed ID: 27499859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new
    López-Perilla YR; Fernández-Roldán JD; Meza-Joya FL; Medina-Rangel GF
    Zookeys; 2023; 1158():27-48. PubMed ID: 37215692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration.
    Khan P; Linkhart B; Simon HG
    Dev Biol; 2002 Oct; 250(2):383-92. PubMed ID: 12376111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression of complement 3 and complement 5 in newt limb and lens regeneration.
    Kimura Y; Madhavan M; Call MK; Santiago W; Tsonis PA; Lambris JD; Del Rio-Tsonis K
    J Immunol; 2003 Mar; 170(5):2331-9. PubMed ID: 12594255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wnt Signaling Coordinates the Expression of Limb Patterning Genes During Axolotl Forelimb Development and Regeneration.
    Lovely AM; Duerr TJ; Qiu Q; Galvan S; Voss SR; Monaghan JR
    Front Cell Dev Biol; 2022; 10():814250. PubMed ID: 35531102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).
    Phan AQ; Lee J; Oei M; Flath C; Hwe C; Mariano R; Vu T; Shu C; Dinh A; Simkin J; Muneoka K; Bryant SV; Gardiner DM
    Regeneration (Oxf); 2015 Aug; 2(4):182-201. PubMed ID: 27499874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification.
    Jaramillo AF; De La Riva I; Guayasamin JM; Chaparro JC; Gagliardi-Urrutia G; Gutiérrez RC; Brcko I; Vilà C; Castroviejo-Fisher S
    Mol Phylogenet Evol; 2020 Aug; 149():106841. PubMed ID: 32305511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Separated dental laminae are present in the upper jaw of Mesoamerican lungless salamanders (Amphibia, Plethodontidae).
    Ehmcke J; Wistuba J; Clemen G
    Ann Anat; 2004 Feb; 186(1):45-53. PubMed ID: 14994911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regeneration and Regrowth Potentials of Digit Tips in Amphibians and Mammals.
    Choi Y; Meng F; Cox CS; Lally KP; Huard J; Li Y
    Int J Cell Biol; 2017; 2017():5312951. PubMed ID: 28487741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immunity in salamander regeneration: Where are we standing and where are we headed?
    Bolaños-Castro LA; Walters HE; García Vázquez RO; Yun MH
    Dev Dyn; 2021 Jun; 250(6):753-767. PubMed ID: 32924213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphological variation in the vomer of aquatic and terrestrial spelerpini salamanders.
    Darcy HE; Anderson PSL
    J Morphol; 2023 Sep; 284(9):e21618. PubMed ID: 37585223
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Positional Memory in Vertebrate Regeneration: A Century's Insights from the Salamander Limb.
    Otsuki L; Tanaka EM
    Cold Spring Harb Perspect Biol; 2022 Jun; 14(6):. PubMed ID: 34607829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Salamander regeneration as a model for developing novel regenerative and anticancer therapies.
    Fior J
    J Cancer; 2014; 5(8):715-9. PubMed ID: 25258653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of the Adult Hematopoietic Liver as the Primary Reservoir for the Recruitment of Pro-regenerative Macrophages Required for Salamander Limb Regeneration.
    Debuque RJ; Hart AJ; Johnson GH; Rosenthal NA; Godwin JW
    Front Cell Dev Biol; 2021; 9():750587. PubMed ID: 34568347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.