BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29299636)

  • 1. Skeletal muscle insulin resistance is induced by 4-hydroxy-2-hexenal, a by-product of n-3 fatty acid peroxidation.
    Soulage CO; Sardón Puig L; Soulère L; Zarrouki B; Guichardant M; Lagarde M; Pillon NJ
    Diabetologia; 2018 Mar; 61(3):688-699. PubMed ID: 29299636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress.
    Pillon NJ; Croze ML; Vella RE; Soulère L; Lagarde M; Soulage CO
    Endocrinology; 2012 May; 153(5):2099-111. PubMed ID: 22396448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant alpha-lipoic acid on insulin resistance in the obese Zucker rat.
    Muellenbach EA; Diehl CJ; Teachey MK; Lindborg KA; Archuleta TL; Harrell NB; Andersen G; Somoza V; Hasselwander O; Matuschek M; Henriksen EJ
    Metabolism; 2008 Oct; 57(10):1465-72. PubMed ID: 18803954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional changes in human insulin induced by the lipid peroxidation byproducts 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal.
    Pillon NJ; Vella RE; Souleere L; Becchi M; Lagarde M; Soulage CO
    Chem Res Toxicol; 2011 May; 24(5):752-62. PubMed ID: 21462967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats.
    Bergeron R; Previs SF; Cline GW; Perret P; Russell RR; Young LH; Shulman GI
    Diabetes; 2001 May; 50(5):1076-82. PubMed ID: 11334411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin signalling in skeletal muscle of subjects with or without Type II-diabetes and first degree relatives of patients with the disease.
    Meyer MM; Levin K; Grimmsmann T; Beck-Nielsen H; Klein HH
    Diabetologia; 2002 Jun; 45(6):813-22. PubMed ID: 12107725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells.
    Maulucci G; Daniel B; Cohen O; Avrahami Y; Sasson S
    Mol Aspects Med; 2016 Jun; 49():49-77. PubMed ID: 27012748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress induces insulin resistance by activating the nuclear factor-kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase.
    Ogihara T; Asano T; Katagiri H; Sakoda H; Anai M; Shojima N; Ono H; Fujishiro M; Kushiyama A; Fukushima Y; Kikuchi M; Noguchi N; Aburatani H; Gotoh Y; Komuro I; Fujita T
    Diabetologia; 2004 May; 47(5):794-805. PubMed ID: 15127200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo effects of insulin and bis(maltolato)oxovanadium (IV) on PKB activity in the skeletal muscle and liver of diabetic rats.
    Marzban L; Bhanot S; McNeill JH
    Mol Cell Biochem; 2001 Jul; 223(1-2):147-57. PubMed ID: 11681716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Toxic Lipid Aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), Accumulate in Patients with Chronic Kidney Disease.
    Soulage CO; Pelletier CC; Florens N; Lemoine S; Dubourg L; Juillard L; Guebre-Egziabher F
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32899405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats: implications for a role of stearoyl-CoA desaturase 1 in insulin resistance.
    Voss MD; Beha A; Tennagels N; Tschank G; Herling AW; Quint M; Gerl M; Metz-Weidmann C; Haun G; Korn M
    Diabetologia; 2005 Dec; 48(12):2622-30. PubMed ID: 16284748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study.
    Mason SA; Della Gatta PA; Snow RJ; Russell AP; Wadley GD
    Free Radic Biol Med; 2016 Apr; 93():227-38. PubMed ID: 26774673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple defects of both hepatic and peripheral intracellular glucose processing contribute to the hyperglycaemia of NIDDM.
    Vaag A; Alford F; Henriksen FL; Christopher M; Beck-Nielsen H
    Diabetologia; 1995 Mar; 38(3):326-36. PubMed ID: 7758880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress--mediated alterations in glucose dynamics in a genetic animal model of type II diabetes.
    Bitar MS; Al-Saleh E; Al-Mulla F
    Life Sci; 2005 Sep; 77(20):2552-73. PubMed ID: 15936776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes.
    Leonard BL; Watson RN; Loomes KM; Phillips AR; Cooper GJ
    Acta Diabetol; 2005 Dec; 42(4):162-70. PubMed ID: 16382303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lipid peroxidation end-product and oxidant 4-hydroxynonenal induces insulin resistance in rat slow-twitch skeletal muscle.
    Prasannarong M; Santos FR; Hooshmand P; Hooshmand P; Giovannini FJ; Henriksen EJ
    Arch Physiol Biochem; 2014 Feb; 120(1):22-8. PubMed ID: 24040897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the glucosamine pathway in fat-induced insulin resistance.
    Hawkins M; Barzilai N; Liu R; Hu M; Chen W; Rossetti L
    J Clin Invest; 1997 May; 99(9):2173-82. PubMed ID: 9151789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites.
    Lee JS; Pinnamaneni SK; Eo SJ; Cho IH; Pyo JH; Kim CK; Sinclair AJ; Febbraio MA; Watt MJ
    J Appl Physiol (1985); 2006 May; 100(5):1467-74. PubMed ID: 16357064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction.
    Barazzoni R; Zanetti M; Gortan Cappellari G; Semolic A; Boschelle M; Codarin E; Pirulli A; Cattin L; Guarnieri G
    Diabetologia; 2012 Mar; 55(3):773-82. PubMed ID: 22159911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved metabolic status and insulin sensitivity in obese fatty (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats treated with the thiazolidinedione, MCC-555.
    Upton R; Widdowson PS; Ishii S; Tanaka H; Williams G
    Br J Pharmacol; 1998 Dec; 125(8):1708-14. PubMed ID: 9886762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.