These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29299643)

  • 1. Body-foot geometries as revealed by perturbed obstacle position with different time constraints.
    Dugas LP; Bouyer LJ; McFadyen BJ
    Exp Brain Res; 2018 Mar; 236(3):711-720. PubMed ID: 29299643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between frontal plane center of mass position stability and foot elevation during obstacle crossing.
    Yamagata M; Tateuchi H; Pataky T; Shimizu I; Ichihashi N
    J Biomech; 2021 Feb; 116():110219. PubMed ID: 33482594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricting ankle motion via orthotic bracing reduces toe clearance when walking over obstacles.
    Evangelopoulou E; Twiste M; Buckley JG
    Gait Posture; 2016 Jan; 43():251-6. PubMed ID: 26520598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shoe heel height on the end-point and joint kinematics of the locomotor system when crossing obstacles of different heights.
    Chien HL; Lu TW
    Ergonomics; 2017 Mar; 60(3):410-420. PubMed ID: 27153344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soldier-relevant body borne load impacts minimum foot clearance during obstacle negotiation.
    Brown TN; Loverro KL; Schiffman JM
    Appl Ergon; 2016 Jul; 55():56-62. PubMed ID: 26995036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
    Rapos V; Cinelli M
    Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors leading to obstacle contact during adaptive locomotion.
    Heijnen MJ; Muir BC; Rietdyk S
    Exp Brain Res; 2012 Nov; 223(2):219-31. PubMed ID: 22972450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses.
    Buckley JG; De Asha AR; Johnson L; Beggs CB
    J Neuroeng Rehabil; 2013 Aug; 10():98. PubMed ID: 23958032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foot clearance when crossing obstacles of different heights with the lead and trail limbs.
    Miura Y; Shinya M
    Gait Posture; 2021 Jul; 88():155-160. PubMed ID: 34052473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obstacle crossing in people with Parkinson's disease: foot clearance and spatiotemporal deficits.
    Galna B; Murphy AT; Morris ME
    Hum Mov Sci; 2010 Oct; 29(5):843-52. PubMed ID: 19962206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of an unexpected perturbation on adaptive gait behavior.
    Rhea CK; Rietdyk S
    Gait Posture; 2011 Jul; 34(3):439-41. PubMed ID: 21764314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent phone texting alters crossing behavior and induces gait imbalance during obstacle crossing.
    Chen SH; Lo OY; Kay T; Chou LS
    Gait Posture; 2018 May; 62():422-425. PubMed ID: 29653403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of using a head-worn display on gait performance during level walking and obstacle crossing.
    Kim S; Nussbaum MA; Ulman S
    J Electromyogr Kinesiol; 2018 Apr; 39():142-148. PubMed ID: 29501988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proactive gait strategies to mitigate risk of obstacle contact are more prevalent with advancing age.
    Muir BC; Haddad JM; Heijnen MJ; Rietdyk S
    Gait Posture; 2015 Jan; 41(1):233-9. PubMed ID: 25455212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the control of obstacle crossing in middle age become evident as gait task difficulty increases.
    Muir BC; Haddad JM; van Emmerik REA; Rietdyk S
    Gait Posture; 2019 May; 70():254-259. PubMed ID: 30909004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.