BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29299676)

  • 1. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO
    Mousavi S; Najafpour GD; Mohammadi M; Seifi MH
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):519-530. PubMed ID: 29299676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Mousavi S; Najafpour GD; Mohammadi M
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30139-30150. PubMed ID: 30151786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater.
    Luo L; He H; Yang C; Wen S; Zeng G; Wu M; Zhou Z; Lou W
    Bioresour Technol; 2016 Sep; 216():135-41. PubMed ID: 27236400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ biological CO
    Razzak SA
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):93-105. PubMed ID: 30259109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production.
    Aketo T; Hoshikawa Y; Nojima D; Yabu Y; Maeda Y; Yoshino T; Takano H; Tanaka T
    J Biosci Bioeng; 2020 May; 129(5):565-572. PubMed ID: 31974048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition.
    Zhang TY; Wu YH; Zhu SF; Li FM; Hu HY
    Bioresour Technol; 2013 Dec; 149():586-9. PubMed ID: 24140357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of the growth environment of microalgae with high biomass and lipid productivity.
    Huang YT; Lee HT; Lai CW
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2117-21. PubMed ID: 23755654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.
    Yao L; Shi J; Miao X
    PLoS One; 2015; 10(9):e0139117. PubMed ID: 26418261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.
    Samorì G; Samorì C; Guerrini F; Pistocchi R
    Water Res; 2013 Feb; 47(2):791-801. PubMed ID: 23211134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blending water- and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014.
    Park S; Kim J; Yoon Y; Park Y; Lee T
    Bioresour Technol; 2015 Dec; 198():388-94. PubMed ID: 26409109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production.
    Kuo CM; Chen TY; Lin TH; Kao CY; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2015 Oct; 194():326-33. PubMed ID: 26210147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production.
    Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA
    Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.
    Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS
    Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool.
    Úbeda B; Gálvez JÁ; Michel M; Bartual A
    Bioresour Technol; 2017 Mar; 228():210-217. PubMed ID: 28064133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgae carbon fixation integrated with organic matters recycling from soybean wastewater: Effect of pH on the performance of hybrid system.
    Song C; Han X; Qiu Y; Liu Z; Li S; Kitamura Y
    Chemosphere; 2020 Jun; 248():126094. PubMed ID: 32041073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of CO
    Almomani F; Al Ketife A; Judd S; Shurair M; Bhosale RR; Znad H; Tawalbeh M
    Sci Total Environ; 2019 Apr; 662():662-671. PubMed ID: 30703724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production.
    Chokshi K; Pancha I; Ghosh A; Mishra S
    Bioresour Technol; 2016 Dec; 221():455-460. PubMed ID: 27668878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Nitrogen Supplementation Status on CO
    Cho JM; Oh YK; Park WK; Chang YK
    J Microbiol Biotechnol; 2020 Aug; 30(8):1235-1243. PubMed ID: 32855379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.