These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29299912)
21. MXene-AuNP-Based Electrochemical Aptasensor for Ultra-Sensitive Detection of Chloramphenicol in Honey. Yang J; Zhong W; Yu Q; Zou J; Gao Y; Liu S; Zhang S; Wang X; Lu L Molecules; 2022 Mar; 27(6):. PubMed ID: 35335235 [TBL] [Abstract][Full Text] [Related]
22. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Deng C; Chen J; Nie Z; Wang M; Chu X; Chen X; Xiao X; Lei C; Yao S Anal Chem; 2009 Jan; 81(2):739-45. PubMed ID: 19072036 [TBL] [Abstract][Full Text] [Related]
23. Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid. Wang C; Chen D; Wang Q; Wang Q Anal Sci; 2016; 32(7):757-62. PubMed ID: 27396657 [TBL] [Abstract][Full Text] [Related]
24. Aptamer-aptamer linkage based aptasensor for highly enhanced detection of small molecules. Nguyen VT; Lee BH; Kim SH; Gu MB Biotechnol J; 2016 Jun; 11(6):843-9. PubMed ID: 27221154 [TBL] [Abstract][Full Text] [Related]
25. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor. Naderi M; Hosseini M; Ganjali MR Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 195():75-83. PubMed ID: 29414585 [TBL] [Abstract][Full Text] [Related]
26. A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Mao Y; Fan T; Gysbers R; Tan Y; Liu F; Lin S; Jiang Y Talanta; 2017 Jun; 168():279-285. PubMed ID: 28391854 [TBL] [Abstract][Full Text] [Related]
27. Highly sensitive aptasensor based on interferometric reflectance spectroscopy for the determination of amyloid β as an Alzheimer's disease biomarkers using nanoporous anodic alumina. Amouzadeh Tabrizi M; Ferré-Borrull J; Marsal LF Biosens Bioelectron; 2019 Jul; 137():279-286. PubMed ID: 31125817 [TBL] [Abstract][Full Text] [Related]
28. A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Liu X; Qin Y; Deng C; Xiang J; Li Y Talanta; 2015 Jan; 132():150-4. PubMed ID: 25476292 [TBL] [Abstract][Full Text] [Related]
29. Coimmunocapture and Electrochemical Quantitation of Total and Phosphorylated Amyloid-β Yin Z; Wang S; Shen B; Deng C; Tu Q; Jin Y; Shen L; Jiao B; Xiang J Anal Chem; 2019 Mar; 91(5):3539-3545. PubMed ID: 30724072 [TBL] [Abstract][Full Text] [Related]
30. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. He B; Du G Anal Bioanal Chem; 2018 May; 410(12):2901-2910. PubMed ID: 29500483 [TBL] [Abstract][Full Text] [Related]
31. A Label-Free Gold Nanoparticles-Based Optical Aptasensor for the Detection of Retinol Binding Protein 4. Moabelo KL; Lerga TM; Jauset-Rubio M; Sibuyi NRS; O'Sullivan CK; Meyer M; Madiehe AM Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551028 [TBL] [Abstract][Full Text] [Related]
32. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Ma X; Guo Z; Mao Z; Tang Y; Miao P Mikrochim Acta; 2017 Dec; 185(1):33. PubMed ID: 29594625 [TBL] [Abstract][Full Text] [Related]
33. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles. Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182 [TBL] [Abstract][Full Text] [Related]
34. Distinction between mild cognitive impairment and Alzheimer's disease by CSF amyloid β40 and β42, and protein-conjugated acrolein. Mizoi M; Yoshida M; Saiki R; Waragai M; Uemura K; Akatsu H; Kashiwagi K; Igarashi K Clin Chim Acta; 2014 Mar; 430():150-5. PubMed ID: 24508996 [TBL] [Abstract][Full Text] [Related]
35. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe. Chai Y; Tian D; Gu J; Cui H Analyst; 2011 Aug; 136(16):3244-51. PubMed ID: 21655607 [TBL] [Abstract][Full Text] [Related]
36. A novel colorimetric aptasensor for detection of chloramphenicol based on lanthanum ion-assisted gold nanoparticle aggregation and smartphone imaging. Wu YY; Liu BW; Huang P; Wu FY Anal Bioanal Chem; 2019 Nov; 411(28):7511-7518. PubMed ID: 31641824 [TBL] [Abstract][Full Text] [Related]
37. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Jin H; Zhao C; Gui R; Gao X; Wang Z Anal Chim Acta; 2018 Sep; 1025():154-162. PubMed ID: 29801604 [TBL] [Abstract][Full Text] [Related]
38. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related]
39. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related]
40. Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt-AuNPs and HRP. Bai L; Yuan R; Chai Y; Yuan Y; Mao L; Zhuo Y Analyst; 2011 May; 136(9):1840-5. PubMed ID: 21380419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]