These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 29300080)
1. Mineralogical Controls on the Bioaccessibility of Arsenic in Fe(III)-As(V) Coprecipitates. Ehlert K; Mikutta C; Jin Y; Kretzschmar R Environ Sci Technol; 2018 Jan; 52(2):616-627. PubMed ID: 29300080 [TBL] [Abstract][Full Text] [Related]
2. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
3. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
4. Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Mikutta C; Mandaliev PN; Mahler N; Kotsev T; Kretzschmar R Environ Sci Technol; 2014 Nov; 48(22):13468-77. PubMed ID: 25358072 [TBL] [Abstract][Full Text] [Related]
5. Influence of in vitro assay pH and extractant composition on As bioaccessibility in contaminated soils. Smith E; Scheckel K; Miller BW; Weber J; Juhasz AL Sci Total Environ; 2014 Mar; 473-474():171-7. PubMed ID: 24369295 [TBL] [Abstract][Full Text] [Related]
6. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
7. The long-term stability of Fe Zhang D; Wang S; Gomez MA; Wang Y; Jia Y J Hazard Mater; 2019 Jul; 374():276-286. PubMed ID: 31009892 [TBL] [Abstract][Full Text] [Related]
8. Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system. Beak DG; Basta NT; Scheckel KG; Traina SJ Environ Sci Technol; 2006 Feb; 40(4):1364-70. PubMed ID: 16572798 [TBL] [Abstract][Full Text] [Related]
9. Reduction of bioaccessibility of As in soil through in situ formation of amorphous Fe oxides and its long-term stability. Park J; An J; Chung H; Kim SH; Nam K Sci Total Environ; 2020 Nov; 745():140989. PubMed ID: 32738685 [TBL] [Abstract][Full Text] [Related]
10. Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system. Beak DG; Basta NT; Scheckel KG; Traina SJ J Environ Qual; 2006; 35(6):2075-83. PubMed ID: 17071876 [TBL] [Abstract][Full Text] [Related]
11. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Ollson CJ; Smith E; Scheckel KG; Betts AR; Juhasz AL J Hazard Mater; 2016 Aug; 313():130-7. PubMed ID: 27060218 [TBL] [Abstract][Full Text] [Related]
12. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545 [TBL] [Abstract][Full Text] [Related]
13. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338 [TBL] [Abstract][Full Text] [Related]
14. Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates. Violante A; Del Gaudio S; Pigna M; Ricciardella M; Banerjee D Environ Sci Technol; 2007 Dec; 41(24):8275-80. PubMed ID: 18200851 [TBL] [Abstract][Full Text] [Related]
15. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
16. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
17. Importance of chemical binding type between As and iron-oxide on bioaccessibility in soil: Test with synthesized two line ferrihydrite. Jeong S; Yang K; Jho EH; Nam K J Hazard Mater; 2017 May; 330():157-164. PubMed ID: 28242536 [TBL] [Abstract][Full Text] [Related]
18. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Chen C; Dynes JJ; Wang J; Sparks DL Environ Sci Technol; 2014 Dec; 48(23):13751-9. PubMed ID: 25350793 [TBL] [Abstract][Full Text] [Related]
19. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468 [TBL] [Abstract][Full Text] [Related]
20. Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK). Palumbo-Roe B; Klinck B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1251-61. PubMed ID: 17654145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]