These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29300186)

  • 21. Double Dirac Semimetals in Three Dimensions.
    Wieder BJ; Kim Y; Rappe AM; Kane CL
    Phys Rev Lett; 2016 May; 116(18):186402. PubMed ID: 27203335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gate tunable relativistic mass and Berry's phase in topological insulator nanoribbon field effect devices.
    Jauregui LA; Pettes MT; Rokhinson LP; Shi L; Chen YP
    Sci Rep; 2015 Feb; 5():8452. PubMed ID: 25677703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flat Band and Hole-induced Ferromagnetism in a Novel Carbon Monolayer.
    You JY; Gu B; Su G
    Sci Rep; 2019 Dec; 9(1):20116. PubMed ID: 31882918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BCS Superconductivity of Dirac electrons in graphene layers.
    Kopnin NB; Sonin EB
    Phys Rev Lett; 2008 Jun; 100(24):246808. PubMed ID: 18643614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Friedel oscillation near a van Hove singularity in two-dimensional Dirac materials.
    Lu CK
    J Phys Condens Matter; 2016 Feb; 28(6):065001. PubMed ID: 26795372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scale-invariant puddles in graphene: Geometric properties of electron-hole distribution at the Dirac point.
    Najafi MN; Nezhadhaghighi MG
    Phys Rev E; 2017 Mar; 95(3-1):032112. PubMed ID: 28415230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
    Diez M; Dahlhaus JP; Wimmer M; Beenakker CW
    Phys Rev Lett; 2014 May; 112(19):196602. PubMed ID: 24877956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double Kagome Bands in a Two-Dimensional Phosphorus Carbide P
    Huang S; Xie Y; Zhong C; Chen Y
    J Phys Chem Lett; 2018 Jun; 9(11):2751-2756. PubMed ID: 29730926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A bird's eye view on the flat and conic band world of the honeycomb and Kagome lattices: towards an understanding of 2D metal-organic frameworks electronic structure.
    Barreteau C; Ducastelle F; Mallah T
    J Phys Condens Matter; 2017 Nov; 29(46):465302. PubMed ID: 28960181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dirac point degenerate with massive bands at a topological quantum critical point.
    Smith JC; Banerjee S; Pardo V; Pickett WE
    Phys Rev Lett; 2011 Feb; 106(5):056401. PubMed ID: 21405413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.
    Cheung WM; Chan KS
    J Phys Condens Matter; 2017 Jun; 29(21):215503. PubMed ID: 28437257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct 3D mapping of the Fermi surface and Fermi velocity.
    Medjanik K; Fedchenko O; Chernov S; Kutnyakhov D; Ellguth M; Oelsner A; Schönhense B; Peixoto TRF; Lutz P; Min CH; Reinert F; Däster S; Acremann Y; Viefhaus J; Wurth W; Elmers HJ; Schönhense G
    Nat Mater; 2017 Jun; 16(6):615-621. PubMed ID: 28272500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide.
    Zhang TT; Yu ZM; Guo W; Shi D; Zhang G; Yao Y
    J Phys Chem Lett; 2017 Dec; 8(23):5792-5797. PubMed ID: 29129074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3.
    Zhu S; Ishida Y; Kuroda K; Sumida K; Ye M; Wang J; Pan H; Taniguchi M; Qiao S; Shin S; Kimura A
    Sci Rep; 2015 Aug; 5():13213. PubMed ID: 26294343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetotransport properties near the Dirac point of Dirac semimetal Cd
    Wang LX; Wang S; Li JG; Li CZ; Xu J; Yu D; Liao ZM
    J Phys Condens Matter; 2017 Feb; 29(4):044003. PubMed ID: 27897146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-dimensional silicon monolayers generated on c-BN(111) substrate.
    Wu H; Qian Y; Lu S; Kan E; Lu R; Deng K; Wang H; Ma Y
    Phys Chem Chem Phys; 2015 Jun; 17(24):15694-700. PubMed ID: 26032926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator.
    Okada Y; Serbyn M; Lin H; Walkup D; Zhou W; Dhital C; Neupane M; Xu S; Wang YJ; Sankar R; Chou F; Bansil A; Hasan MZ; Wilson SD; Fu L; Madhavan V
    Science; 2013 Sep; 341(6153):1496-9. PubMed ID: 23989954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic structure and topological properties of centrosymmetric MoAs
    Chen J; Li YK; Dai J; Cao C
    Sci Rep; 2017 Sep; 7(1):10491. PubMed ID: 28874735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Anisotropic Dirac Fermions in Square Graphynes.
    Zhang LZ; Wang ZF; Wang ZM; Du SX; Gao HJ; Liu F
    J Phys Chem Lett; 2015 Aug; 6(15):2959-62. PubMed ID: 26267188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.