These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29300412)

  • 1. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors.
    Arnot JA; Mackay D
    Environ Sci Process Impacts; 2018 Jan; 20(1):86-97. PubMed ID: 29300412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an improved understanding of processes controlling absorption efficiency and biomagnification of organic chemicals by fish.
    Xiao R; Arnot JA; MacLeod M
    Chemosphere; 2015 Nov; 138():89-95. PubMed ID: 26047570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective.
    Mackay D; Celsie AKD; Powell DE; Parnis JM
    Environ Sci Process Impacts; 2018 Jan; 20(1):72-85. PubMed ID: 29260171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish.
    Arnot JA; Quinn CL
    Environ Sci Technol; 2015 Apr; 49(8):4783-96. PubMed ID: 25821900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.
    Lo JC; Letinski DJ; Parkerton TF; Campbell DA; Gobas FA
    Environ Sci Technol; 2016 Dec; 50(24):13299-13308. PubMed ID: 27993034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processes influencing chemical biomagnification and trophic magnification factors in aquatic ecosystems: Implications for chemical hazard and risk assessment.
    Mackay D; Celsie AKD; Arnot JA; Powell DE
    Chemosphere; 2016 Jul; 154():99-108. PubMed ID: 27038905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical relationships between metrics of chemical bioaccumulation in fish.
    Mackay D; Arnot JA; Gobas FA; Powell DE
    Environ Toxicol Chem; 2013 Jul; 32(7):1459-66. PubMed ID: 23440888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Toxicokinetic Framework and Analysis Tool for Interpreting Organisation for Economic Co-operation and Development Guideline 305 Dietary Bioaccumulation Tests.
    Gobas FAPC; Lee YS; Lo JC; Parkerton TF; Letinski DJ
    Environ Toxicol Chem; 2020 Jan; 39(1):171-188. PubMed ID: 31546284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary Bioaccumulation and Biotransformation of Hydrophobic Organic Sunscreen Agents in Rainbow Trout.
    Saunders LJ; Hoffman AD; Nichols JW; Gobas FAPC
    Environ Toxicol Chem; 2020 Mar; 39(3):574-586. PubMed ID: 31749247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish.
    Larisch W; Goss KU
    Environ Sci Process Impacts; 2018 Jan; 20(1):98-104. PubMed ID: 29235599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-Correcting the Bioconcentration Factor and Biomagnification Factor in Bioaccumulation Assessments.
    Gobas FAPC; Lee YS
    Environ Toxicol Chem; 2019 Sep; 38(9):2065-2072. PubMed ID: 31162716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.
    Lee YS; Lo JC; Otton SV; Moore MM; Kennedy CJ; Gobas FAPC
    Environ Toxicol Chem; 2017 Jul; 36(7):1934-1946. PubMed ID: 28000964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish.
    Lo JC; Campbell DA; Kennedy CJ; Gobas FA
    Environ Toxicol Chem; 2015 Oct; 34(10):2282-94. PubMed ID: 25939596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption and bioaccumulation behavior of multi-class hydrophobic organic contaminants in a tropical marine food web.
    Zhang H; Kelly BC
    Chemosphere; 2018 May; 199():44-53. PubMed ID: 29428515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating metabolic biotransformation rates in fish from laboratory data.
    Arnot JA; Mackay D; Bonnell M
    Environ Toxicol Chem; 2008 Feb; 27(2):341-51. PubMed ID: 18348640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of contaminants in fish.
    Streit B
    EXS; 1998; 86():353-87. PubMed ID: 9949881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter uncertainty in modeling bioaccumulation factors of fish.
    Hauck M; Hendriks HW; Huijbregts MA; Ragas AM; van de Meent D; Hendriks AJ
    Environ Toxicol Chem; 2011 Feb; 30(2):403-12. PubMed ID: 21038440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms.
    Ren J; Wang X; Wang C; Gong P; Wang X; Yao T
    Environ Pollut; 2017 Jan; 220(Pt A):636-643. PubMed ID: 27751636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario, Canada.
    McLeod AM; Paterson G; Drouillard KG; Haffner GD
    Environ Toxicol Chem; 2014 Aug; 33(8):1825-31. PubMed ID: 24729083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.