BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29300467)

  • 1. Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant.
    O'Donnell JP; Marsh HM; Sondermann H; Sevier CS
    Biochemistry; 2018 Feb; 57(7):1073-1086. PubMed ID: 29300467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.
    Sriram M; Osipiuk J; Freeman B; Morimoto R; Joachimiak A
    Structure; 1997 Mar; 5(3):403-14. PubMed ID: 9083109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural replacement of active site monovalent cations by the epsilon-amino group of lysine in the ATPase fragment of bovine Hsc70.
    Wilbanks SM; McKay DB
    Biochemistry; 1998 May; 37(20):7456-62. PubMed ID: 9585559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine reactivity distinguishes redox sensing by the heat-inducible and constitutive forms of heat shock protein 70.
    Miyata Y; Rauch JN; Jinwal UK; Thompson AD; Srinivasan S; Dickey CA; Gestwicki JE
    Chem Biol; 2012 Nov; 19(11):1391-9. PubMed ID: 23177194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis.
    O'Brien MC; Flaherty KM; McKay DB
    J Biol Chem; 1996 Jul; 271(27):15874-8. PubMed ID: 8663302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change.
    Sousa MC; McKay DB
    Biochemistry; 1998 Nov; 37(44):15392-9. PubMed ID: 9799500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lid domain of Caenorhabditis elegans Hsc70 influences ATP turnover, cofactor binding and protein folding activity.
    Sun L; Edelmann FT; Kaiser CJ; Papsdorf K; Gaiser AM; Richter K
    PLoS One; 2012; 7(3):e33980. PubMed ID: 22479492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih).
    Ming J; Xie J; Xu P; Liu W; Ge X; Liu B; He Y; Cheng Y; Zhou Q; Pan L
    Fish Shellfish Immunol; 2010 Mar; 28(3):407-18. PubMed ID: 19944170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of interdomain communication in the Hsc70 chaperone.
    Jiang J; Prasad K; Lafer EM; Sousa R
    Mol Cell; 2005 Nov; 20(4):513-24. PubMed ID: 16307916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein.
    Briknarová K; Takayama S; Brive L; Havert ML; Knee DA; Velasco J; Homma S; Cabezas E; Stuart J; Hoyt DW; Satterthwait AC; Llinás M; Reed JC; Ely KR
    Nat Struct Biol; 2001 Apr; 8(4):349-52. PubMed ID: 11276257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The carboxyl-terminal lobe of Hsc70 ATPase domain is sufficient for binding to BAG1.
    Brive L; Takayama S; Briknarová K; Homma S; Ishida SK; Reed JC; Ely KR
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1099-105. PubMed ID: 11741305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange.
    Brehmer D; Rüdiger S; Gässler CS; Klostermeier D; Packschies L; Reinstein J; Mayer MP; Bukau B
    Nat Struct Biol; 2001 May; 8(5):427-32. PubMed ID: 11323718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein.
    Johnson ER; McKay DB
    Biochemistry; 1999 Aug; 38(33):10823-30. PubMed ID: 10451379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of the N-terminal nucleotide binding domain of an ABC drug transporter of Candida albicans: uncommon cysteine 193 of Walker A is critical for ATP hydrolysis.
    Jha S; Karnani N; Dhar SK; Mukhopadhayay K; Shukla S; Saini P; Mukhopadhayay G; Prasad R
    Biochemistry; 2003 Sep; 42(36):10822-32. PubMed ID: 12962507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion protein of ATPase domain of Hsc70 with TRP2 acting as a tumor vaccine against B16 melanoma.
    Zhang H; Wang W; Li Q; Huang W
    Immunol Lett; 2006 Jun; 105(2):167-73. PubMed ID: 16580737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent modification of cysteine 193 impairs ATPase function of nucleotide-binding domain of a Candida drug efflux pump.
    Jha S; Karnani N; Lynn AM; Prasad R
    Biochem Biophys Res Commun; 2003 Oct; 310(3):869-75. PubMed ID: 14550284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrogen bonds between Arg423 and Glu472 and other key residues, Asp443, Ser477, and Pro489, are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na(+)/K(+)-ATPase.
    Lánský Z; Kubala M; Ettrich R; Kutý M; Plásek J; Teisinger J; Schoner W; Amler E
    Biochemistry; 2004 Jul; 43(26):8303-11. PubMed ID: 15222743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity.
    Pérez-Vargas J; Romero P; López S; Arias CF
    J Virol; 2006 Apr; 80(7):3322-31. PubMed ID: 16537599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding.
    Hattendorf DA; Lindquist SL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2732-7. PubMed ID: 11867765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimentally biased model structure of the Hsc70/auxilin complex: substrate transfer and interdomain structural change.
    Gruschus JM; Greene LE; Eisenberg E; Ferretti JA
    Protein Sci; 2004 Aug; 13(8):2029-44. PubMed ID: 15273304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.