These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29300471)

  • 1. Engineering Biosensors with Dual Programmable Dynamic Ranges.
    Wei B; Zhang J; Ou X; Lou X; Xia F; Vallée-Bélisle A
    Anal Chem; 2018 Feb; 90(3):1506-1510. PubMed ID: 29300471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response.
    Schoukroun-Barnes LR; Glaser EP; White RJ
    Langmuir; 2015 Jun; 31(23):6563-9. PubMed ID: 26005758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dual-Sensing DNA Nanostructure with an Ultrabroad Detection Range.
    Kang B; Park SV; Soh HT; Oh SS
    ACS Sens; 2019 Oct; 4(10):2802-2808. PubMed ID: 31547650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.
    Zhang Z; Tao C; Yin J; Wang Y; Li Y
    Biosens Bioelectron; 2018 Apr; 103():39-44. PubMed ID: 29278811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.
    Mao Y; Liu J; He D; He X; Wang K; Shi H; Wen L
    Talanta; 2015 Oct; 143():381-387. PubMed ID: 26078174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-engineering Electrochemical Aptamer-Based Biosensors to Tune Their Useful Dynamic Range via Distal-Site Mutation and Allosteric Inhibition.
    Li S; Li C; Wang Y; Li H; Xia F
    Anal Chem; 2020 Oct; 92(19):13427-13433. PubMed ID: 32872766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors.
    Liang Y; Wu C; Figueroa-Miranda G; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2019 Nov; 144():111668. PubMed ID: 31522101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.
    Wang D; Xiao X; Xu S; Liu Y; Li Y
    Biosens Bioelectron; 2018 Jan; 99():431-437. PubMed ID: 28810234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Analysis of Target-Induced Hairpin-Mediated Aptamer Sensors.
    Su S; Ma J; Xu Y; Pan H; Zhu D; Chao J; Weng L; Wang L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48133-48139. PubMed ID: 32955243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.
    Yu P; He X; Zhang L; Mao L
    Anal Chem; 2015 Jan; 87(2):1373-80. PubMed ID: 25495279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates.
    Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J
    Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-Switchable Binding Properties of the ATP-Aptamer.
    Biniuri Y; Luo GF; Fadeev M; Wulf V; Willner I
    J Am Chem Soc; 2019 Oct; 141(39):15567-15576. PubMed ID: 31478647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine.
    Cui L; Lu M; Li Y; Tang B; Zhang CY
    Biosens Bioelectron; 2018 Apr; 102():87-93. PubMed ID: 29127900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aptamer-based electrochemiluminescent biosensor for ATP detection.
    Yao W; Wang L; Wang H; Zhang X; Li L
    Biosens Bioelectron; 2009 Jul; 24(11):3269-74. PubMed ID: 19443209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive electrochemical aptasensor by coupling "signal-on'' and "signal-off'' strategies.
    Wu L; Zhang X; Liu W; Xiong E; Chen J
    Anal Chem; 2013 Sep; 85(17):8397-402. PubMed ID: 23998713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.