These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29300491)

  • 21. Nucleic acids delivering nucleic acids.
    Catuogno S; Esposito CL; Condorelli G; de Franciscis V
    Adv Drug Deliv Rev; 2018 Sep; 134():79-93. PubMed ID: 29630917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overcoming cellular barriers for RNA therapeutics.
    Dowdy SF
    Nat Biotechnol; 2017 Mar; 35(3):222-229. PubMed ID: 28244992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular delivery of oligonucleotide conjugates and dendrimer complexes.
    Juliano RL
    Ann N Y Acad Sci; 2006 Oct; 1082():18-26. PubMed ID: 17145920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innovative developments and emerging technologies in RNA therapeutics.
    Halloy F; Biscans A; Bujold KE; Debacker A; Hill AC; Lacroix A; Luige O; Strömberg R; Sundstrom L; Vogel J; Ghidini A
    RNA Biol; 2022; 19(1):313-332. PubMed ID: 35188077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides.
    González-Paredes A; Sitia L; Ruyra A; Morris CJ; Wheeler GN; McArthur M; Gasco P
    Eur J Pharm Biopharm; 2019 Jan; 134():166-177. PubMed ID: 30468838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulation and binding energy calculation for estimation of oligonucleotide duplex thermostability in RNA-based therapeutics.
    Shen L; Johnson TL; Clugston S; Huang H; Butenhof KJ; Stanton RV
    J Chem Inf Model; 2011 Aug; 51(8):1957-65. PubMed ID: 21702481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics.
    Lönnberg H
    Bioconjug Chem; 2009 Jun; 20(6):1065-94. PubMed ID: 19175328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the Delivery of Molecules to the Mitochondrial Matrix Using Click Chemistry.
    Hoogewijs K; James AM; Smith RA; Gait MJ; Murphy MP; Lightowlers RN
    Chembiochem; 2016 Jul; 17(14):1312-6. PubMed ID: 27124570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications.
    Perrone D; Marchesi E; Preti L; Navacchia ML
    Molecules; 2021 May; 26(11):. PubMed ID: 34067312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids.
    Nåbo LJ; Madsen CS; Jensen KJ; Kongsted J; Astakhova K
    Chembiochem; 2015 May; 16(8):1163-7. PubMed ID: 25940911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent patents in antiviral siRNAs.
    Saravolac EG; Wong JP; Cairns MJ
    Recent Pat Antiinfect Drug Discov; 2010 Jan; 5(1):44-57. PubMed ID: 19807677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noncoding RNA therapeutics - challenges and potential solutions.
    Winkle M; El-Daly SM; Fabbri M; Calin GA
    Nat Rev Drug Discov; 2021 Aug; 20(8):629-651. PubMed ID: 34145432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conjugation of peptides to antisense interleukin-6 via click chemistry.
    Wang CF; Auriola S; Hirvonen J; Santos HA
    Curr Med Chem; 2014 Apr; 21(10):1247-54. PubMed ID: 24251570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-Acetyl Galactosamine Targeting: Paving the Way for Clinical Application of Nucleotide Medicines in Cardiovascular Diseases.
    Biessen EAL; Van Berkel TJC
    Arterioscler Thromb Vasc Biol; 2021 Dec; 41(12):2855-2865. PubMed ID: 34645280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs.
    Johannes L; Lucchino M
    Nucleic Acid Ther; 2018 Jun; 28(3):178-193. PubMed ID: 29883296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy.
    Vijayanathan V; Agostinelli E; Thomas T; Thomas TJ
    Amino Acids; 2014 Mar; 46(3):499-509. PubMed ID: 23860846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System.
    Mendonça MCP; Kont A; Aburto MR; Cryan JF; O'Driscoll CM
    Mol Pharm; 2021 Apr; 18(4):1491-1506. PubMed ID: 33734715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orthogonal End Labelling of Oligonucleotides through Dual Incorporation of Click-Reactive NTP Analogues.
    Schönegger ES; Crisp A; Radukic M; Burmester J; Frischmuth T; Carell T
    Chembiochem; 2024 Jan; 25(1):e202300701. PubMed ID: 37861375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications.
    Cordeiro RA; Serra A; Coelho JFJ; Faneca H
    J Control Release; 2019 Sep; 310():155-187. PubMed ID: 31454533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted delivery systems for oligonucleotide therapeutics.
    Yu B; Zhao X; Lee LJ; Lee RJ
    AAPS J; 2009 Mar; 11(1):195-203. PubMed ID: 19296227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.