These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29300734)

  • 1. Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency.
    Zaboikin M; Freter C; Srinivasakumar N
    PLoS One; 2018; 13(1):e0190192. PubMed ID: 29300734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency.
    Zaboikin M; Freter C; Srinivasakumar N
    PLoS One; 2018; 13(3):e0194470. PubMed ID: 29529068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Melt Curve Analysis in Cancer Mutation Screen.
    Mehrotra M; Patel KP
    Methods Mol Biol; 2016; 1392():63-9. PubMed ID: 26843047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative characterization of hepatitis delta virus genome edition by next-generation sequencing.
    Sopena S; Godoy C; Tabernero D; Homs M; Gregori J; Riveiro-Barciela M; Ruiz A; Esteban R; Buti M; Rodríguez-Frías F
    Virus Res; 2018 Jan; 243():52-59. PubMed ID: 28988126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data.
    Leong WM; Ripen AM; Mirsafian H; Mohamad SB; Merican AF
    Genomics; 2019 Jul; 111(4):899-905. PubMed ID: 29885984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.
    Zaboikin M; Zaboikina T; Freter C; Srinivasakumar N
    PLoS One; 2017; 12(1):e0169931. PubMed ID: 28095454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving bacteria identification from digital melt assay via oligonucleotide-based temperature calibration.
    Traylor A; Lee PW; Hsieh K; Wang TH
    Anal Chim Acta; 2024 Apr; 1297():342371. PubMed ID: 38438240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth.
    Kaiser RD; London E
    Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid identification and recovery of ENU-induced mutations with next-generation sequencing and Paired-End Low-Error analysis.
    Pan L; Shah AN; Phelps IG; Doherty D; Johnson EA; Moens CB
    BMC Genomics; 2015 Feb; 16(1):83. PubMed ID: 25886285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time RT-PCR and SYBR Green I melting curve analysis for the identification of Plum pox virus strains C, EA, and W: effect of amplicon size, melt rate, and dye translocation.
    Varga A; James D
    J Virol Methods; 2006 Mar; 132(1-2):146-53. PubMed ID: 16293321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Analysis of A-to-I RNA Editing.
    Savva YA; Laurent GS; Reenan RA
    Methods Mol Biol; 2016; 1358():255-68. PubMed ID: 26463388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time ARMS PCR/high-resolution melt curve assay for the detection of the three primary mitochondrial mutations in Leber's hereditary optic neuropathy.
    Ryan SE; Ryan F; O'Dwyer V; Neylan D
    Mol Vis; 2016; 22():1169-1175. PubMed ID: 27746671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis.
    Thomas HR; Percival SM; Yoder BK; Parant JM
    PLoS One; 2014; 9(12):e114632. PubMed ID: 25503746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep sequencing data for identification of editing sites in mature miRNAs.
    Alon S; Eisenberg E
    Methods Mol Biol; 2015; 1269():231-42. PubMed ID: 25577382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Sequencing to Detect DNA-RNA Changes.
    Lo Giudice C; Pesole G; Picardi E
    Methods Mol Biol; 2021; 2181():193-212. PubMed ID: 32729082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GOANA: A Universal High-Throughput Web Service for Assessing and Comparing the Outcome and Efficiency of Genome Editing Experiments.
    Reti D; O'Brien A; Wetzel P; Tay A; Bauer DC; Wilson LOW
    CRISPR J; 2021 Apr; 4(2):243-252. PubMed ID: 33876955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Methylation Analysis by Bisulfite Conversion Coupled to Double Multiplexed Amplicon-Based Next-Generation Sequencing (NGS).
    Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2018; 1767():367-382. PubMed ID: 29524146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Editing in Human and Mouse Tissues.
    Srinivasan H; Kok EPL; Tan MH
    Methods Mol Biol; 2021; 2181():163-176. PubMed ID: 32729080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput and Low-Cost Genotyping Method for Plant Genome Editing.
    Liu L; Chen R; Fugina CJ; Siegel B; Jackson D
    Curr Protoc; 2021 Apr; 1(4):e100. PubMed ID: 33826801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution melt analysis of the minisatellite D1S80: a potential forensic screening tool.
    Pomeroy RS; Balamurugan K; Wong H; Duncan G
    Electrophoresis; 2014 Nov; 35(21-22):3020-7. PubMed ID: 25204971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.