These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 29300857)
1. Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach. Garin G; Pradal C; Fournier C; Claessen D; Houlès V; Robert C Ann Bot; 2018 Apr; 121(5):927-940. PubMed ID: 29300857 [TBL] [Abstract][Full Text] [Related]
2. Plant architecture and foliar senescence impact the race between wheat growth and Zymoseptoria tritici epidemics. Robert C; Garin G; Abichou M; Houlès V; Pradal C; Fournier C Ann Bot; 2018 Apr; 121(5):975-989. PubMed ID: 29373663 [TBL] [Abstract][Full Text] [Related]
4. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Chen W; Wellings C; Chen X; Kang Z; Liu T Mol Plant Pathol; 2014 Jun; 15(5):433-46. PubMed ID: 24373199 [TBL] [Abstract][Full Text] [Related]
5. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth. Robert C; Bancal MO; Nicolas P; Lannou C; Ney B J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221 [TBL] [Abstract][Full Text] [Related]
6. Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Dingle J; McGee PA Mycol Res; 2003 Mar; 107(Pt 3):310-6. PubMed ID: 12825500 [TBL] [Abstract][Full Text] [Related]
7. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. Zhang H; Yang Y; Wang C; Liu M; Li H; Fu Y; Wang Y; Nie Y; Liu X; Ji W BMC Genomics; 2014 Oct; 15(1):898. PubMed ID: 25318379 [TBL] [Abstract][Full Text] [Related]
8. Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model. Baccar R; Fournier C; Dornbusch T; Andrieu B; Gouache D; Robert C Ann Bot; 2011 Oct; 108(6):1179-94. PubMed ID: 21724656 [TBL] [Abstract][Full Text] [Related]
10. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Panwar V; McCallum B; Bakkeren G Plant Mol Biol; 2013 Apr; 81(6):595-608. PubMed ID: 23417582 [TBL] [Abstract][Full Text] [Related]
11. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Kaur J; Fellers J; Adholeya A; Velivelli SL; El-Mounadi K; Nersesian N; Clemente T; Shah D Transgenic Res; 2017 Feb; 26(1):37-49. PubMed ID: 27582300 [TBL] [Abstract][Full Text] [Related]
12. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS. Smith J; Waterhouse S; Paveley N Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473 [TBL] [Abstract][Full Text] [Related]
13. Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: a case study with cultivar mixtures and a non-specialized disease causal agent. Gigot C; de Vallavieille-Pope C; Huber L; Saint-Jean S Ann Bot; 2014 Sep; 114(4):863-75. PubMed ID: 24989786 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the leaf rust responsive ARF genes in wheat (Triticum aestivum L.). Chandra S; Satapathy L; Basu S; Jha SK; Kumar M; Mukhopadhyay K Plant Cell Rep; 2020 Dec; 39(12):1639-1654. PubMed ID: 32892289 [TBL] [Abstract][Full Text] [Related]
15. Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.). Dutta S; Kumar D; Jha S; Prabhu KV; Kumar M; Mukhopadhyay K Planta; 2017 Nov; 246(5):939-957. PubMed ID: 28710588 [TBL] [Abstract][Full Text] [Related]
16. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. Robert C; Bancal MO; Ney B; Lannou C New Phytol; 2005 Jan; 165(1):227-41. PubMed ID: 15720636 [TBL] [Abstract][Full Text] [Related]
17. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. Huai B; Yang Q; Wei X; Pan Q; Kang Z; Liu J BMC Plant Biol; 2020 Jan; 20(1):49. PubMed ID: 32000681 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of a Wheat Homeodomain protein, TaR1, reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus Zymoseptoria tritici. Lee J; Orosa B; Millyard L; Edwards M; Kanyuka K; Gatehouse A; Rudd J; Hammond-Kosack K; Pain N; Sadanandom A New Phytol; 2015 Apr; 206(2):598-605. PubMed ID: 25639381 [TBL] [Abstract][Full Text] [Related]
19. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.). Peng FY; Yang RC BMC Plant Biol; 2017 Jun; 17(1):108. PubMed ID: 28633642 [TBL] [Abstract][Full Text] [Related]
20. Wheat reaction to leaf rust and Septoria tritici blotch in four fertilization conditions. Gonçalves MJ; Bagulho AS; Da Silva MJ; Carvalho MT Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1081-5. PubMed ID: 17390862 [No Abstract] [Full Text] [Related] [Next] [New Search]