BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29300920)

  • 1. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.
    Wu M; Lin Z; Ma S; Chen T; Jiang R; Wong WH
    J Mol Cell Biol; 2017 Dec; 9(6):436-452. PubMed ID: 29300920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
    Li Y; Kellis M
    Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
    Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z
    Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization.
    Gagliano SA; Barnes MR; Weale ME; Knight J
    PLoS One; 2014; 9(5):e98122. PubMed ID: 24844982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling regulatory network topology improves genome-wide analyses of complex human traits.
    Zhu X; Duren Z; Wong WH
    Nat Commun; 2021 May; 12(1):2851. PubMed ID: 33990562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS.
    Lin HY; Liu Q; Li X; Yang J; Liu S; Huang Y; Scanlon MJ; Nettleton D; Schnable PS
    Genome Biol; 2017 Oct; 18(1):192. PubMed ID: 29041960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional genomics complements quantitative genetics in identifying disease-gene associations.
    Guan Y; Ackert-Bicknell CL; Kell B; Troyanskaya OG; Hibbs MA
    PLoS Comput Biol; 2010 Nov; 6(11):e1000991. PubMed ID: 21085640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring Gene-Disease Association by an Integrative Analysis of eQTL Genome-Wide Association Study and Protein-Protein Interaction Data.
    Wang J; Zheng J; Wang Z; Li H; Deng M
    Hum Hered; 2018; 83(3):117-129. PubMed ID: 30669151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification.
    Feng Z; Duren Z; Xin J; Yuan Q; He Y; Su B; Wong WH; Wang Y
    Elife; 2022 Dec; 11():. PubMed ID: 36525361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TSEA-DB: a trait-tissue association map for human complex traits and diseases.
    Jia P; Dai Y; Hu R; Pei G; Manuel AM; Zhao Z
    Nucleic Acids Res; 2020 Jan; 48(D1):D1022-D1030. PubMed ID: 31680168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies.
    Shang L; Smith JA; Zhou X
    PLoS Genet; 2020 Apr; 16(4):e1008734. PubMed ID: 32310941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding multicellular function and disease with human tissue-specific networks.
    Greene CS; Krishnan A; Wong AK; Ricciotti E; Zelaya RA; Himmelstein DS; Zhang R; Hartmann BM; Zaslavsky E; Sealfon SC; Chasman DI; FitzGerald GA; Dolinski K; Grosser T; Troyanskaya OG
    Nat Genet; 2015 Jun; 47(6):569-76. PubMed ID: 25915600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network.
    Ignatieva EV; Afonnikov DA; Saik OV; Rogaev EI; Kolchanov NA
    BMC Genet; 2016 Dec; 17(Suppl 3):158. PubMed ID: 28105929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways.
    Verardo LL; Silva FF; Lopes MS; Madsen O; Bastiaansen JW; Knol EF; Kelly M; Varona L; Lopes PS; GuimarĂ£es SE
    Genet Sel Evol; 2016 Feb; 48():9. PubMed ID: 26830357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.